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Abstract—Face Recognition is one of the most studied problems
in computer vision due to its importance to areas such as
forensics, surveillance, neuroscience and psychology. This work
comprises a preliminary study of the face identification (one
of the tasks comprising face recognition) considering large
galleries. We analyze how the face recognition rate behaves
under the presence of an increasing number of individuals in
the gallery set, referred to as distractors. Nowadays, many real-
world applications demand face search and identification at
colossal scale. Therefore, we direct our attention towards the 1:N
face identification task, where N, the gallery size, is extremely
large. The idea behind this work is to study and evaluate the
performance of face identification for such large face galleries.
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I. INTRODUCTION

Face Recognition (FR) is one of the most prominent com-
puter vision problems, important to areas such as forensics,
surveillance, neuroscience and psychology. Surveillance sys-
tems count on quiet and passive acquisition by taking the face
image deprived of cooperation or knowledge of the person
being framed.

In general, the FR task is dealt like a machine learning
problem. The learning stage consists of a collection of face
images labeled with their corresponding subject’s identity,
denominated gallery set, and the probe set, a collection of
unlabeled face images from the same array of people (closed
set), which constitutes the testing stage. Given a gallery and
a probe set, most approaches explore all gallery samples,
extracting a series of descriptive features from each face in
order to learn a model. Then, a machine learning technique,
applied as a classifier, assigns each probe image’s feature
vector the label that closest matches a subject from the gallery.

There are several works in the literature that address recog-
nition accuracy enhancement. In particular, Huang et al. [1]
and Neves et al. [2] designed unconstrained datasets primarily
for this purpose. On the other hand, just a few of them
delve into scalable approaches for large gallery sets. Hence,
scalability in FR has not yet been appropriately addressed. Due
to their “small” size, most existing FR datasets fail approach
two problems: both (i) identification rate decreases and (ii)
multi-class classification complexity increases as the dataset
size expands.

When it comes to large galleries, a natural alternative is
to replace objects and shapes by their features and, then,
apply some sort of indexing and search strategy in the new
“low-dimensional” space. We believe that building a solid

gallery filtering approach is an essential procedure for face
identification at scale. When it is not employed, searching for
the right identity in a dataset containing countless individuals
will be like finding a needle in a haystack. If a filtering step
is not implemented, a large load of tests will be required
to retrieve an individual’s true identity. Contrarily, a stable
refinement step casts aside individuals enrolled in the gallery
that are improbable to correspond to the probe sample identity
with low computational penalty.

Many real-world applications demand face search and iden-
tification at colossal scale. Therefore, we direct our attention
towards the 1 : N face identification task, when 1 represents
a probe set, andN , the gallery size, is extremely large. As
N increases, the computational cost rises significantly. We
evaluate how a simple recognition algorithm performs with
a massive number of distractors, that is, subjects only used to
populate the gallery set. Some researchers focus on the open-
set face identification problem, but in this study, similarly
to the majority of works in the literature, our performance
evaluation is carried out in the closed-set gallery fashion.

In this work, we analyze how a face recognition system
approach reacts with the addition of distractors, which are
subjects enrolled in the gallery set if and only if they are not
present in the query set. In general, the overall performance
deteriorates with the increase of the gallery size. Consequently,
we investigate both search performance and search time for
large datasets – up to 10 thousand additional images are used
in this preliminary study.

The remainder of this document is structured as follows.
Section II encapsulates scalable face identification algorithms
as well as a few large datasets. Section III presents a simple
algorithm for feature extraction and the description of Partial
Least Squares. Section IV exhibits the results of our initial
experiments. Finally, in Section V, conclusions and future
works are pointed out.

II. RELATED WORKS

There is a large number of works proposed to solve
identification problems, either in unrestrained scenarios or in
relatively “small” datasets [3]–[6]. It is needless to say that
these studies accomplished substantial progress in the last
10 years; however, FR is far from being solved since many
applications have failed to deliver in scenarios containing
billions of individuals.

With scalability in mind, some datasets were proposed: Ng
et al. [7] released a moderate-sized image database called



FaceScrub; Shlizerman et al. [8] announced the MegaFace
challenge, and Wang et al. [9] proposed what seems to be
the largest face search experiment up to now, conducted on a
dataset with 80-million images downloaded from the Internet.

Some researchers have employed convolutional neural net-
works [10]–[13] whereas others focused either on clustering
or hashing techniques [14]–[16] to get around the scalability
problem. Grother et al. [17] analyzed leading algorithms on
millions of images taking into account accuracy and speed
metrics. The results were considerably satisfactory, attaining
recognition result of 90% on a 1.6-million-subject dataset.

The approach proposed by Santos et al. [18] derives from
Locality-Sensitive Hashing (LSH). Basically, they replaced
LSH randomness by a PLS regression. The method projects a
query image onto each learned PLS model in order to obtain a
score value that is used either to increase or decrease weights
of subjects in the positive set. Lastly, the list of subjects is
rearranged and presented as a candidate list. They revealed
at minimum 95% recognition rate on the Facial Recognition
Technology (FERET) [19] dataset and up to 96.7% on the
Face Recognition Grand Challenge (FRGC) [20] dataset.

Pham et al. [21] used a linked-node m-ary tree (LM-tree) for
both Exact and Approximate Nearest Neighbor (ENN/ANN)
searches. Their method narrows down the search space with
pruning rules. They validated their methods on datasets com-
posed of SURF [22], SIFT [23] and GIST [24] features to
show it works fine for ENN and ANN searches in comparison
to many state-of-the-art methods. Wang et al. [9] developed a
face search system based on a cascade-like framework. In a
nutshell, they normalize input images, generate templates and
quickly select an approximate list of candidates. It employs
a deep convolutional network combined with product quanti-
zation. The authors reported 98.23% accuracy rate on LFW
standard protocol and 56.27% on BLUFR [25] using cosine
similarity.

Up to now, the methodology employed in this work is
essentially based on one of the methods proposed by Schwartz
et al. [26]. The authors focus on reducing the time required
to evaluate a massive volume of samples and identifying
faces presenting a high dimensional feature descriptor using
Partial Least Squares (PLS). Additionally, they combine low-
level feature descriptors to find out those that best segregate
different subjects. The method is evaluated on FRGC and
FERET datasets.

III. EMPLOYED APPROACH

The evaluated FR approach comprises a simple feature
extraction algorithm preceding a Partial Least Squares regres-
sion, which builds new predictor variables as linear combina-
tions of the original variables. Consequently, this section firstly
summarizes the appearance-based feature extraction process
and then briefly outlines the One-Against-All PLS (OAA-PLS)
regression.

After detecting, cropping and resizing the faces, each sam-
ple is decomposed into blocks. The low-level feature extraction
is performed for all blocks from a cropped face. Then, these

descriptors are concatenated into a high-dimensional feature
vector so that it can describe the face.

A. Feature Extraction

An appropriate feature extraction methodology allows to
efficiently represent relevant parts of an image as a compact
feature vector. We employ image cropping and resizing before
splitting images into several overlapping blocks, obtaining
several feature descriptors from each window.

The feature extraction process starts with a face detection
algorithm. Next, the image is clipped so that it can be placed
into a grid that is comprised of several blocks. Then, instead
of extracting features from the face image as a whole, the idea
is to focus on the region within each block independently. By
concatenating every block’s histogram, we generate a local
feature vector, which tends to be more robust to small varia-
tions when compared to changes in the whole face pattern.

So far, we utilized two feature descriptors: Circular Local
Binary Pattern (CLBP) [27] and Patterns of Oriented Edge
Magnitudes (POEM) [28]. CLBP defines a local neighborhood
as a set of sampling points evenly spaced on a circle centered
at the pixel yet to be labeled. Pixel values are bi-linearly
interpolated whenever the sampling point is not in the center
of a pixel. POEM is an oriented multi-resolution descriptor –
capable of capturing variation-robust information – that meets
three important principles: computational cost, robustness, and
discriminative power.

B. Partial Least Squares

PLS is robust enough to manage multicollinearity in high-
dimensional data. A great advantage of using PLS is that it
attributes features weights according to their discriminatory
capacity. Besides, it also works well when there are few
face images to represent each subject in the dataset. In the
considered approach, a PLS regression model is learned for
each subject in the gallery following a one-against-all scheme.

Fig. 1. Building PLS regression model for a subject in the gallery during
training stage.

In the one-against-all approach, depicted in Figure 1, sam-
ples from the subject are learnt with response equal to +1 and



samples from other subjects with response equal to −1. When
the i-th individual is considered, all other subject’s samples
are used as counterexamples. In this case, the PLS regression
model is learnt considering feature descriptors extracted from
samples in the positive set with target values equal to +1
against samples in the negative set with target values equal
to −1.

PLS regression models are used to determine whether a test
sample belongs to the positive or negative subset. During the
testing stage, probe samples are presented to each PLS model
and associated to the identity related to the model that returns
the highest score.

IV. PRELIMINARY EXPERIMENTS

The employed approach is evaluated on a recent non-
constrained dataset, which is part of the Megaface Chal-
lenge [8] and on FRGC [20] (check it for experiments descrip-
tion). Initially, we test our method on datasets containing no
additional individuals (Section IV-A); then, we add distractors
(Section IV-B).

For the CLBP feature extraction, we used 24 × 24 pixel
sliding windows and a 14-pixel stride. Moreover, we ended up
setting the radius parameter to 9. POEM parameters: 3 bins,
7-pixel radius, 8× 8-pixel cell, 32× 32-pixel block, 16-pixel
stride. This setup was implemented to both datasets: FRGC
v1.0 and FaceScrub.

Metrics: Cumulative Match Characteristic (CMC) curves
evaluate the capability of biometric systems that return a
ranked list of candidates. Another curve, Rank-1 Identification
Rate, takes into consideration only the CMC Rank-1 value. It
describes a biometric system as a function of the growing
number of subjects or distractors in the gallery.
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Fig. 2. CMC curves: Identification rates obtained for all considered FRGC
experiments using CLBP alone or combined with POEM.

A. Standard Gallery

Figure 2 indicates low recognition rates in FRGC experi-
ment four, even with the combination of feature descriptors.

We understand that experiment four is quite challenging be-
cause it consists of a gallery set having just one controlled face
image for each subject and a probe set composed of uncon-
trolled images only. Experiments one and two do not involve
uncontrolled images and, consequently, attained satisfactory
results. We illustrate how the number of training samples per
subject influences recognition capability in Figure 3.
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Fig. 3. CMC curves: Average recognition rates obtained for FaceScrub using
CLBP+POEM with a variable number of samples per subject.

B. Addition of Distractors

Now, we analyze the performance of the employed approach
method considering the addition of new individuals into the
gallery. We present Rank-1 identification rate for both datasets
in Figure 4. The experiments hold the maximum number of
samples per subject: four and fifty images per individual for
the FRGC (CLBP descriptor only) and FaceScrub, respec-
tively. Note that these values do not apply to the number of
samples per distractor, whose number of samples is fixed in
one. Although we only add up to ten thousand distractors, the
system accuracy loss is notable.

Just as we assumed in the beginning, algorithms efficiency
deteriorates in increasingly galleries even when the probe set
size does not vary. We believe that the significant fall observed
on the FRGC curve can be explained by the low number of
samples per subject, only four, when set side by side with
FaceScrub’s outcome, which involves fifty images for each
individual. It is worth noting, based on these experiments, that
algorithms trained on larger gallery sets – numerous samples
per class – tend to perform better at scale regardless of the
selected dataset, which brings out into open what once were
subtle differences across many methods that do not cope with
scalability.

V. FUTURE WORKS

In this paper, we have detailed the challenges involving
large gallery sets. Massive galleries contain numerous subjects,
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Fig. 4. Identification rate at Rank-1 obtained for FRGC (CLBP descriptor
only) and FaceScrub with the addition of new individuals.

resulting in a large number of comparisons, turning the OAA-
PLS approach very inefficient. Therefore, new methods must
be studied to better engage in the scalable recognition problem.

We will investigate Space Partitioning (SP) since it itera-
tively splits the feature space into subsets of the same size.
The space is randomly divided considering the axis holding
the highest variance value in the original data. We are aware
that tree-based space partitioning may take completely “wrong
turns”. Then, we have to boost it in case we opt for SP.

If we employ any Clustering Algorithm (CA), it will execute
until the number of elements in every cluster drops below a
fixed value. Some researchers describe clustering as a black
hole since there is no generic way for identifying the K
number of clusters [29]. We know that K-means is sensitive to
outliers; so, even if a sample is far from any cluster centroid,
it would be erroneously moved into its closest cluster.

We believe that LSH is a promising approach since it splits
the entire data by setting up lots of random direction vectors.
If two data points are close by, they are likely of being inserted
to the same bucket. Some works limit LSH to the Hamming
space [30]. Then, we may need to modify the LSH method
to the l2 norm – inserting l2 space into the l1 space and after
that introducing l1 space into the Hamming space.
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