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Abstract

Face Recognition is one of the most relevant problems in
computer vision as we consider its importance to areas such
as surveillance, forensics and psychology. Furthermore,
open-set face recognition has a large room for improvement
since only few researchers have focused on it. In fact,
a real-world recognition system has to cope with several
unseen individuals and determine whether a given face
image is associated with a subject registered in a gallery
of known individuals. In this work, we combine hashing
functions and classification methods to estimate when probe
samples are known (i.e., belong to the gallery set). We
carry out experiments with partial least squares and neural
networks and show how response value histograms tend to
behave for known and unknown individuals whenever we
test a probe sample. In addition, we conduct experiments on
FRGCv1, PubFig83 and VGGFace to show that our method
continues effective regardless of the dataset difficulty.

1. Introduction
Face Recognition (FR) systems are in great rush to help

fight crime and terrorism. It has numerous applications to
areas such as forensics, surveillance and law enforcement,
especially public and financial security. Other applications
involve user authentication for access control to physical
and virtual spaces to ensure higher security.

Traditional face recognition approaches conventionally
extract image features that correspond to facial components.
Particularly, these methods would initially search for shape
of the eyes, mouth contour, nose appearance, face silhouette
to name a few and use them as discriminative features while
exploring other images. Face Recognition is a general term
that is used to refer to distinct problems. Chellappa et
al. [1] define three main tasks. The face verification, in
which the goal is to determine whether a pair of images
corresponds to the same subject. That is, the verification
task is equivalent to 1:1 matching problems; The face
Identification, a 1:N matching task, which assumes that

every queried subject was previously cataloged, ensuring
that the probe face holds a corresponding identity in the
gallery set. It characterizes a closed-set problem; the
watch-list, similar to face identification but it does not
guarantee all query subjects are registered in the face
gallery, representing an open-set problem.

There are several works on closed-set face identification
[2–7]. Real-world applications cannot assume every query
image is known and, as a result, they are better represented
by the open-set task since there is only a partial knowledge
of the world and countless unknown inputs. A scenario
like this comprehends a classification model where only few
classes are known at training time, but a myriad of unknown
classes appear at test time [8].

This work is inspired on an method proposed by
Santos et al. [9], which provides a scalable closed-set
face identification approach to galleries with hundreds and
thousands of subjects. Instead of working on the face
identification task, we focus on the watch-list setting, where
most query images presented to the recognition procedure
do not match any of the subjects previously enrolled in the
gallery set.

Our main hypothesis is that vote list histograms proceed
differently whether we present probe face images whose
identity are enrolled in the gallery or whether we examine
“unseen” individuals. Figure 1 illustrates two different
queries: one corresponds to querying an enrolled individual
and the other searches for an unknown subject. Notice
that there is a highlighted bin when the query image has a
matching identity. It probably represents the probe sample’s
identity. On the contrary, several bins are incremented when
no subject from the gallery corresponds to the probe sample.

In the proposed approach, we combine locality-sensitive
hashing (LSH), partial least squares (PLS) and fully
connected networks (FCN) to get the best of the three
worlds. LSH was designed to solve near neighbor search
in high dimensional spaces. It hashes data in such a way
that similar items tend to map to the same “bucket”. PLS
weights feature descriptors to best discriminate throughout
different classes, handling high-dimensional data and
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Figure 1: Two queries for the same individual of the FRGCv1 dataset when he is either registered in the gallery set (a) or a
completely unknown person (b). A considerable number of subjects from the gallery set turn into candidates when there is
no clue what the identity for the query image is.

successfully overcoming the problem of having just a
few samples per class. FCN is a biologically-based
programming paradigm that enables computer systems
to learn from observational data. It is composed
of numerous highly interconnected processing elements
(neurons) working in harmony to solve specific problems.
Therefore, we replace each LSH random projection either
by PLS or FCN to obtain better discrimination between
positive and negative samples.

We reimplement and adapt the partial least squares
algorithm for face hashing [9] to find out whether a query
sample is known, that is, it has a corresponding identity
in the face gallery. Then, we carry on replacing PLS
regression models with fully connected networks. We
present our results on different datasets – FRGCv1 [10],
PubFig83 [11] and VGGFace [12] – and show that they
continue stable regardless of the chosen dataset.

The predominant contributions of this work are: 1) an
adaptation of locality-sensitive hashing combined with two
different classifiers to the open-set recognition problem
in a supervised learning setting; 2) an easy-to-implement
algorithm with a single trade-off parameter to be estimated.

2. Related Work

Only recently has open-set recognition been explored in
the literature. Specifically for face recognition, few works
focus on finding thresholds that must be satisfied so that
probe face images are identified as known. There has been a
lot more works intended to solve closed-set problems, either
in unrestrained scenarios or in relatively “small” datasets [5,
13–15]. It is needless to say that these studies accomplished
substantial progress in the last 10 years; however, FR is far
from being solved since many applications have failed to

deliver in watch-list scenarios.
Support Vector Machines (SVM) are broadly used in

image retrieval problems. With the advent of one-class
SVM [16, 17], some researchers became involved in open-
set tasks [18–21] as it seems reasonable to train a classifier
with only known positive data. In cases of restricted
training time or too much data, one-class support vector
machine faces some issues since it generates kernel models
and, therefore, it is not very scalable.

The work of Kamgar-Parsi et al. [22] consists in
performing open-world face recognition by learning a
classifier for every single subject from a watch-list.
Each subject’s model is likely to accept images from
corresponding targets and reject everybody else. Thus, there
is no experiment on open-set face recognition.

Liao et al. [23] developed a protocol to explore all face
images available in the Labeled Faces in the Wild (LFW)
dataset [24] for large-scale recognition under verification
and open-set identification scenarios. They concluded that
open-set recognition persists unresolved for large galleries.

Santos et al. [25] proposed five different methods in a
single work: one of them stands on discriminating face
samples between known and background set. The four
remaining methods are based on identification responses.
They encompass Chebyshev inequality, SVM classifiers and
least squares. Their approaches did not attain satisfactory
accuracy in large gallery sets.

Bendale et al. [26] introduced a formal definition to the
open-world problem. They came up with Nearest Non-
Outlier (NNO), an algorithm that continuously update its
inner model with additional unseen object categories and
no need to retrain the entire model. NNO minimizes the
risk of falling into open space, a space sufficiently far from
any known positive training sample. The algorithm rejects



a query q as an outlier when it is too far from any training
sample. As consequence, it labels q as unknown when all
classes reject q as an outlier

Zhang et al. [27] proposed a new Sparse Representation
and Classification algorithm (SRC). They introduced a
training stage to the SRC algorithm so that it can be adapted
to tackle open-set recognition problems by seeking the
sparsest representation in terms of the training data.

The last direction of relevant work lies on Locality-
Sensitive Hashing (LSH) [28, 29], a family of embedding
approaches that reduces the dimensionality of high
dimensional data. It is data independent, i.e., it does not
explore the data distribution. With LSH, there is a high
probability feature descriptors map to the same hashing
location when they are located in neighboring regions in
the feature space. One of the main deprivations of the LSH
family is that LSH generally requires a long bit length to
attain sufficient precision and recall. This drawback may
lead to storage overhead and end up limiting the number of
applications LSH could be utilized in.

3. Proposed Approach
The proposed method is based on two works in the

literature [9, 30]. Both combine Locality Sensitive Hashing
(LSH) and Partial Least Squares (PLS) to speed up image
retrieval in large galleries. On the other hand, we combine
and adapt LSH, PLS and FCN towards the watch-list task
so that we can determine whether a subject is registered in
a gallery of known individuals.

3.1. Open-set Recognition

Like most supervised learning problems, our approach is
based on two canonical steps: training and testing. Figure 2
presents the pipeline of our method. Our approach analyzes
feature vectors and their corresponding identities to learn an
inferred function for every single hashing model, which are
used to generate vote list histograms whenever a query is
requested.

3.1.1 Training Stage

We start the training stage by randomly partitioning all
subjects registered in the gallery set into two disjoint
collections: positive and negative subset. In pursuance of
a balanced division, samples are drawn from a binomial
distribution (parameter n = 1 and parameter p = 0.5) in
the interest of associating a gallery subject with the positive
class when the distribution value gets closer to one.

Just as we split all subjects into the positive or
negative collection, we guarantee that each subset contains
approximately the same number of individuals. Besides, we
make sure that all samples belonging to a certain individual
will be in the same class. At that moment we execute

a learning algorithm so that a single model is learnt for
both positive and negative subsets in a binary classification
fashion.

The generation of binary classifiers for hashing is
repeated several times1 and, therefore, each classification
model contains different individuals pertaining to the
positive or negative collection. These classifiers are
essential because they determine whether a query face
sample is a member of the positive or negative class.
Feature descriptors are obtained from samples in the
positive set with target values equal to +1 in contrast to
samples in the negative set, which hold target values equal
to −1. These features must be extracted and combined
with their corresponding target values so that classification
models can be successfully learnt.

3.1.2 Testing Stage

At the time that we move to the testing stage, we engage the
same feature descriptors employed during the training step
to extract features from query face images. We present this
feature vector to each one of the classifiers in exchange for
the response value r.

Given a probe face image, we start a vote list replete with
zero values. Each position in the vote list corresponds to a
subject from the set of known subjects that is required for
training. Each classification model has a record of which
individuals were randomly categorized as pertaining to the
positive and negative subset.

As we compare a probe sample to all classification
models, we increment each model’s response value r on the
vote list only for those subjects belonging to the positive
subset. In the end, we sort the vote list in decreasing order
(see Figure 1) in behalf of keeping individuals with higher
probability of matching the probe sample on the top of the
vote list ranking. In essence, we simply want to find out
how much the top scorer (leading subject of the sorted vote
list) stands out from all other individuals.

Unlike Santos et al. [30], which sort the vote list in
descending order of incremented scores toward generating
a list of candidates for face identification, we arrange the
vote list in the interest of computing the ratio of the top
scorer to the remaining individuals. We fully detail the ratio
estimation in Section 4.3. The proposed method also differs
from the original implementation in some aspects: we store
both positive and negative collections for every regression
model. Moreover, we increment regression values on the
vote list even when they are negative in an attempt to
intensify the difference among the vote list scores.

1The number of hashing models is a parameter defined by the user.



Figure 2: An overview of binary classifiers embedded into hashing functions: Training: Feature descriptors are obtained for
all subjects’ samples before they are partitioned into positive and negative sets. Then, different classification models are learnt
containing different subjects in each subset. Testing: Same features are extracted from the query image. It is compared to all
hashing functions and their response values are used to increment a vote list. If the ratio of the top scorer to the remaining
subjects satisfies a threshold, it is considered a known individual.

3.2. Classifiers

In the interest of generating classification models, we
explore two approaches: Partial Least Squares (PLS) and
Fully Connected Network (FCN).

3.2.1 Partial Least Squares

The purpose of PLS [31] is to create latent variables as a
linear combination of the independent zero-mean variables
X and Y . More precisely, X represents a matrix of feature
descriptors whereas Y describes a vector of response
variables. Then, PLS searches for latent vectors so they
can be simultaneously decomposed into X = TPT + E
and Y = UQT + F in order to identify the maximum
covariance between these variables. Matrix Tn×p portrays
latent variables from feature vectors and matrix Un×p

denotes latent variables from target values. Variables Pp×d

and Q1×d can be compared to the loading matrices from
principal component analysis. Eventually, variables E and
F represent residuals.

We employ the Non-linear Iterative PLS (NIPALS) [32]
algorithm to compute the low-dimensional data
representation. NIPALS estimates the maximal covariance
between latent variables T and U and outputs a matrix of
weight vectors Wd×p. Then, it estimates the regression
coefficients vector β using least squares as follows:
β = W (PTW )−1TTY . The PLS regression response for a
query image’s feature vector is given by ŷ = ȳ+βT (x− x̄)
where ȳ is the sample mean of Y and x̄ the average values
of X .

3.2.2 Fully Connected Network

To boost the recognition results, we also propose a second
approach by replacing all PLS models with FCN classifiers.
All FCN models target at modeling the relationship of

observable variables and determining whether a probe
sample’s identity was enrolled in the gallery set at training
time. It works very much alike the PLS approach: a matrix
of weight vectors is calculated considering the results of
each FCN model and the regression response for a query
image’s feature vector is then returned.

Is this face
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…
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neurons
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Feature Vector

Figure 3: A diagram of the fully connected network model
employed.

As depicted in Figure 3, we propose a small network
architecture with two layers. Each node is a neuron with
a nonlinear activation function that is connected to every
neuron in the previous layer. Therefore, each node in one
layer connects with a certain weight w to every node in the
subsequent layer. This was the chosen architecture because
it reported the best results in an exploratory experiment with
several other architectures, considering different numbers
of neurons and depths.

4. Experimental Results
In this section we evaluate locality-sensitive hashing

(LSH) combined with partial least squares (PLS) and fully
connected network (FCN)2.

2HPLS and HFCN code and experimental data can be downloaded from
https://github.com/rafaelvareto/HPLS-HFCN-openset



4.1. Face Datasets

The proposed methods are evaluated on a recent non-
constrained dataset and on two well-known datasets. In
favor of demonstrating its effectiveness, we select datasets
with different characteristics, ranging from frontal cropped
images taken under controlled scenarios to images in the
wild with lighting and pose variations.

FRGCv1. Face Recognition Grand Challenge v1.0 [10]
consists of 152 subjects and six different experiments. We
only evaluate the methods on three of them: experiment
one, two and four. Experiment four considers a gallery with
one controlled still picture for each subject plus a probe set
having multiple uncontrolled images. Experiments one and
two only contain controlled images. Experiments three, five,
and six do not correspond to 2D face recognition.

PubFig83. PubFig83 [11] is a fragment of the original
Public Figures dataset [33]. It comprises several
uncontrolled images with pose and expression variations.
PubFig83 is composed of 83 individuals with 100 samples
each.

VGGFace. VGGFace dataset [12] contains about 2.6
million samples of more than 2600 celebrities and public
figures collected from the web. Its initial list of public
figures was taken out of the Internet Movie Data Base
(IMDB) celebrity list. Due to its massive size and high
training time, we arbitrary select a portion of the original
VGGFace containing a thousand subjects with 15 samples
each3.

4.2. Feature Descriptors

In this section, we depict the two feature descriptors
selected in this work: HOG and VGG. The former was
designed for object detection whereas the latter is based
on convolutional neural networks for face detection and
recognition.

HOG. Histogram of Oriented Gradients (HOG) [34]
generates descriptors that comprise shape information in the
form of histograms. Before feature extraction, images are
rescaled to 128×144 pixels and each sample is decomposed
into a set of overlapping blocks which features are extracted
from. Each block is 16 × 16 pixels, with an 8-pixel stride
and an 8× 8-pixel cell size. After extracting features for all
blocks, descriptors are concatenated in a feature vector and
that turns into a feature descriptor.

VGG. The VGGFace CNN descriptor is computed using
the implementation of Parkhi et al. [12], which is based
on the VGG-Very-Deep-16 CNN architecture [35]. We
consider the standard training weights utilized by the

3Subjects are chosen according to alphabetical ordering of all subjects
followed by the selection of the first 1000 individuals. Samples are also
sorted in ascending order and the first fifteen available images are selected.

authors, therefore, there is not any sort of fine tuning
towards the selected datasets.

4.3. Evaluation Protocol

There is not a worldwide consensus when it comes
to protocols for open-set face recognition. As a result,
most works in the literature proposes distinct protocols for
different datasets. With that in mind, we evaluate PubFig83
alone on a protocol exploited by few researchers [11,25,36].
This protocol is applied to experiments depicted in Table 1
and Table 4.
Proposed Protocol. We propose a new protocol for the
experiments carried out with FRGCv1 and VGGFace. We
partition the entire dataset, varying the known individuals
set size in 10%, 50% and 90%. All the remaining
individuals become unseen classes during training time. For
each subject in the known subset, 50% of the samples are
randomly selected for training and the remaining is left for
testing. This protocol is applied to experiments exposed on
Table 2 and Table 5.
Evaluation Metric. We consider both extensively
employed Receiver Operating Characteristic (ROC) curves
and its Area Under Curve (AUC) for all datasets. ROC
curves usually present true positive rate on the Y axis,
and false positive rate on the X axis. It indicates that the
plot’s top left corner is the optimal point. Good open-set
recognition systems would present true positive rates for the
ROC curve equal to one. Similarly, AUC ranges from zero
to one, being preferable values approaching one.
Threshold Selection. An evaluation of three different
thresholds is executed in the interest of finding out the one
that better impacts our algorithms. Figure 4 shows the ROC
curve for each threshold, which are detailed below:

τ1 =
HTS1

AV G(HTS2
+HTS3

)
(1)

τ2 =
HTS1

HTS2

(2)

τ3 =
HTS1

AV G(HTS2 + ...+HTSp)
, p = d0.15× |H|e (3)

Basically, they are based on the ratio of the top scorer
TS1 to the succeeding subjects. The chart indicates that
the ratio among only the leading three top scores does not
drastically interfere the area under the curve.

4.4. Recognition Evaluation

We evaluate the approaches described in Section 3
for VGGFace, PubFig83 and experiment number four of
FRGCv1 dataset. From now on we refer to the combination
of locality-sensitive hashing and partial least squares as
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Figure 4: Average ROC curves for the FRGCv1 dataset on
experiment one. We repeated this experiment five times,
fixing variable p to 15% of all subjects in the gallery set.

HPLS. Equivalently, HFCN turns into the association of
hashing methods with fully connected network.

4.4.1 Baseline: One-Class SVM

One-class SVM [16] generates a spherical boundary around
the data in the feature space. The idea is to add most data
into the hyper-sphere so that it becomes an optimization
problem. There are two key parameters we should concern
when using one-class SVM: gamma and nu values.

In our experiments, we execute the one-class WSVM
algorithm proposed by Scheirer et al. [17], which is publicly
available in the form of a library called libSVM. The best
results were obtained with gamma’s default value. With
respect to nu, we perform a grid search in pursuance of
the value that provides the best AUC for each experiment’s
protocol.

4.4.2 Descriptor Selection

There are two feature descriptors used in this work:
HOG and VGGFace CNN descriptor. Table 1 presents a
comparison between both descriptors on PubFig83 dataset.
We have chosen this dataset since there is no room for
data influence, which would not be possible with FRGCv1
or VGGFace, resulting then in a proper contrast. The
considered approaches are HPLS and HFCN which stands
for the proposed approaches alternating the classifier in PLS
and FCN.

As we can see in Table 1, both approaches using
VGGFace CNN descriptor notably outperform HOG-
based algorithms. While HOG only holds shape
information, VGGFace CNN descriptor comprises much
more information related to faces since its network was
previously trained on a face dataset.

Approach AUC STD #Execs
HPLS-HOG 0.658 0.014 5
HPLS-VGG 0.954 0.008 5
HFCN-HOG 0.640 0.021 5
HFCN-VGG 0.974 0.005 5

Table 1: Comparison between HOG and VGG descriptors
on PubFig83 with HPLS and HFCN algorithms.

4.4.3 Literature Comparison

Table 2 shows experiments on the FRGCv1 dataset. In
their analysis, Santos et al. [25] combine four descriptors:
HOG, LBP, mean color and Gabor filters. We attain very
good results using either HOG or VGG. We presented the
proposed approach of this paper in the form of HFCN and
HPLS for fully connected network and partial least squares,
respectively. WSVM symbolizes the one-class SVM of
Scheirer et al. [17]. We also assess the performance of each
feature descriptor independently (HOG and VGG). We fix
both the number of hashing models to 100 and the quantity
of individuals in the known set to 50%, in accordance to the
protocol specified in Section 4.3.

Approach AUC STD #Execs
Least Squares [25] 0.869 - -

SVM-Single [25] 0.853 - -
Chebyshev [25] 0.838 - -

WSVM-VGG [17] 0.862 0.014 10
WSVM-HOG [17] 0.515 0.027 10

HPLS-HOG 0.910 0.022 10
HFCN-VGG 0.877 0.021 10
HPLS-VGG 0.850 0.008 10
HFCN-HOG 0.613 0.105 10

Table 2: Average AUC, standard deviation (STD) and
number of executions (#Execs) for the experiment four
of FRGCv1 dataset. We employ the proposed protocol
with 100 hashing models, selecting 50% of the subjects to
compose the gallery set.

There are blank cells in the first three rows of Table 2
because we did not reproduce those experiments. HOG
is a low-level feature descriptor; however, it performed
well with partial least squares. We believe it can be
explained by HOG’s structure and FRGCv1’s predominant
characteristics since it encompasses high-resolution images
acquired under partial controlled conditions and no pose
variation. VGGFace was learnt considering more than two
thousand unique individuals with all sorts of pose variations
and expression changes. Therefrom, HOG outperforming
VGG seems plausible.



4.4.4 Single Classifier Evaluation

For the purpose of analyzing each classifier’s behavior
individually, experiments considering PLS and FCN are
performed in the FRGCv1 experiment four, described in
Section 4.1. Table 3 presents the hit rate for 100 executions.

PLS (%) FCN (%)
AVG 73.559 77.026
STD 1.943 1.648
MIN 70.614 73.245

MAX 77.631 80.592

Table 3: Evaluation of PLS and FCN classifiers
individually. The presented results are: average (AVG),
standard deviation (STD), minimum (MIN) and maximum
(MAX). They are computed on 100-execution hit rates.

Results show that a FCN classifier alone provides better
results than a PLS model. While a PLS model achieves a
hit rate of approximately 73.56%, the FCN classifier attains
77.03%. Both methods hold tight standard deviation values.
The variation between their minimum and maximum values
remained close to the average values.

4.4.5 Additional Evaluation

To check how the method responds to some parameter
adjustments, we analyze the behavior of the approaches by
varying the number of hashing models for the PubFig83
dataset and alternating the size of the subset of known
individuals for both VGGFace and FRGCv1. Table 4 and
Table 5 expose how these parameters affect the proposed
methods.

#Models 100 300 500

HPLS-VGG
AUC 0.946 0.954 0.972
STD 0.009 0.015 0.004

HFCN-VGG
AUC 0.970 0.972 0.980
STD 0.000 0.004 0.007

Table 4: Variable number of hashing models: AUC and
STD for PubFig83, considering 75/83 randomly chosen
subjects in the known subset. Eight individuals left
compose the unknown subset.

Table 4 shows no clear accuracy improvement. The little
increase in AUC for PubFig83 with increasingly hashing
models may be justified with the fact that algorithms trained
with multiple-sample gallery sets – for this experiment,
PubFig83 holds 90 samples per class and only 83 classes
– are inclined to remain stable regardless of the number of
hashing functions. If we reduce the number of samples per
subject available at training time and increase the number
of subjects enrolled in the gallery set, chances are more
hashing models will be required in order to keep AUC high.

Known individuals 10% 50% 90%

F
R

G
C

v1
4 HFCN

AUC 0.872 0.877 0.856
STD 0.015 0.022 0.014

HPLS
AUC 0.794 0.850 0.856
STD 0.078 0.009 0.022

WSVM [17]
AUC 0.866 0.862 0.848
STD 0.035 0.015 0.019

V
G

G
Fa

ce

HFCN
AUC 0.996 0.974 0.964
STD 0.011 0.008 0.005

HPLS
AUC 0.972 0.962 0.924
STD 0.004 0.004 0.005

WSVM [17]
AUC 0.841 0.839 0.835
STD 0.013 0.007 0.007

Table 5: Variable known individuals: AUC and STD for
FRGCv1 experiment four and VGGFace dataset. We secure
100 hashing models for WSVM, HPLS and HFCN with
VGG descriptor as we execute each algorithm 10 times.

In general, the accuracy of a recognition system tends
to reduce as we have more individuals enrolled in the
gallery set. Surprisingly, in Table 5, our methods efficiency
did not deteriorate with the enrollment of new subjects in
the FRGCv1 dataset since having more samples increase
the discriminability of classifiers when there are only few
samples per subject. We believe that the stable behavior
observed on the proposed approaches lies on their capability
of remaining robust despite of parameter adaptation and
dataset selection.

5. Conclusions

The proposed methods seemed promising in solving a
task not frequently considered in the literature, namely,
open-set face recognition. Two basic approaches were
introduced: HFCN and HPLS. Experiments have shown
that VGGFace CNN descriptor contains more valuable
information than HOG in the unrestrained open-set face
recognition task. In addition, a comparison with the
literature shows high accuracy with HPLS-HOG and
HFCN-VGG protocols on FRGCv1 experiment four. For
future works, we intend to apply the designed approaches
to huge galleries [37], aiming at performing a pre-filtering
of the individuals to be compared with the gallery samples.
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