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Resumo

O reconhecimento de faces é um dos problemas mais relevantes em visão computacional
quando consideramos sua importância em áreas como vigilância, ciência forense e
psicologia. De fato, um sistema de reconhecimento que representa o mundo real
deve lidar com vários indivíduos desconhecidos e determinar se uma dada imagem
está associada a um sujeito registrado em uma galeria de indivíduos conhecidos ou se
dois rostos representam identidades equivalentes. Neste trabalho, não só combinamos
funções de indexação, coleção de classificadores e histogramas para estimar quando
imagens faciais pertencem à galeria, mas também modelamos a relação entre pares de
faces para determinar se elas são da mesma pessoa. Os dois métodos propostos são
avaliados em cinco datasets: FRGCv1, LFW, PubFig, PubFig83 e CNN VGGFace.
Os resultados são promissores e mostram que o nosso método continua eficiente tanto
na verificação e identificação de galeria aberta, independentemente da dificuldade dos
datasets.
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Abstract

Face Recognition is one of the most relevant problems in computer vision as we consider
its importance to areas such as surveillance, forensics and psychology. In fact, a real-
world recognition system has to cope with several unseen individuals and determine
either if a given face image is associated with a subject registered in a gallery of known
individuals or if two given faces represent equivalent identities. In this work, not only
we combine hashing functions, embedding of classifiers and response value histograms
to estimate when probe samples belong to the gallery set, but we also extract relational
features to model the relation between pair of faces to determine whether they are from
the same person. Both proposed methods are evaluated on five datasets: FRGCv1,
LFW, PubFig, PubFig83 and CNN VGGFace. Results are promising and show that
our method continues effective for both open-set face identification and verification
tasks regardless of the dataset difficulty.

Keywords: Artificial Neural Network, Support Vector Machine, Partial Least Squares,
Open-set Face Identification, Face Verification, Machine Learning, Surveillance.
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Chapter 1

Introduction

Face recognition has been one of the most important tasks in computer vision and
biometrics during the last decades. Besides, it is in great rush to help fight crime and
terrorism due to its increasing international problem and threat. Because of the wide
range of face recognition applications in several environments – e.g., access control,
forensics, law enforcement, social media, surveillance systems – and the accessibility
of feasible recording and storage technologies in the last years, face recognition tasks
received significant attention from the scientific community.

Traditional face recognition approaches conventionally extract image features
that correspond to facial components and fiducial points. In general, these methods
would initially search for shape of the eyes, mouth contour, nose appearance, face
silhouette to name a few and use them as discriminating features while exploring other
face images. Particularly, surveillance systems count on quiet and passive acquisition by
taking the face image deprived of cooperation or knowledge of the subject being framed,
intensifying the recognition process difficulty. For this reason, the approaches developed
for face recognition still have some limitations caused by real applications conditions,
such as partial occlusion, illumination variation, and camera resolution [Zhang and
Gao, 2009].

According to Chellappa et al. [2010], the face recognition problem can be divided
into three closely-related categories (see Figure 11): face verification (FV), where the
goal is to determine whether a pair of images corresponds to the same subject; closed-
set face identification (CI), where we assume that every queried subject was previously
cataloged, ensuring that the probe face holds a corresponding identity in the gallery
set; and open-set face identification (OI), which is similar to face identification with
the difference that it does not guarantee that all query subjects are registered in the
face gallery.

1



2 Chapter 1. Introduction

Figure 11: Illustration of three face recognition tasks: closed-set face identification,
open-set face identification and face verification. In real scenarios, facial images go
under many changes as we consider acquisition limitations and the typical human
ageing. The main recognition challenges comprise image resolution, pose variations
with respect to the camera, dark environments, light-induced saturation or glare, facial
expressions, occlusions or disguises, facial hair, weight loss or gain, and any attribute
inhering human beings.

Several researchers have developed approaches to improve the performance of
automatic face recognition [Ahonen et al., 2006; Hayat et al., 2017; Klare and Jain,
2013; Lei et al., 2014; Lu et al., 2013; Schroff et al., 2015; Yi et al., 2013]. Basically,
in a generic face identification system, the goal is to determine which one of a group
of known individuals best matches a probe face sample. They are a suitable means
of examining the separability among individuals’ faces or finding similar persons.
Purely closed-set identification applications are limited to cases where only enrolled
persons are encountered. Open-set identification approaches behave like closed-set
face identification for known individuals and also label persons not identified by the
system into an “unidentified subject” category. In face verification, the goal is to check
from a probe face sample whether a person is who she or he claims to be. Particularly,
it requires distinguishing an alleged face image known to the recognition system from
potentially face samples unknown to the system.

This work combines Locality-Sensitive Hashing (LSH), Support Vector Machine
(SVM), Partial Least Squares (PLS) and Artificial Neural Networks (ANN) to get the
best of the four worlds towards open-set face identification and face verification. LSH
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was designed to solve near-neighbor search in high-dimensional spaces. It hashes data
in such a way that similar items tend to map to the same “bucket”. SVMs are supervised
learning methods that choose the hyperplane that maximizes the distance to the
nearest data points. PLS weights feature descriptors to best discriminate throughout
different classes, handling high-dimensional data and successfully overcoming the
problem of having few samples per class. ANNs are composed of numerous highly
interconnected processing elements (neurons) working in harmony to solve problems
that demand machine learning. For the proposed approaches, we replace each LSH
random projection either by SVM, PLS or ANN to obtain better discrimination between
positive and negative samples. Then, a set of these learned classifiers are employed to
solve open-set identification and face verification tasks.

1.1 Applications

As one of the most noninvasive biometrics, face recognition is employed in many
pervasive computing tasks. It can be an interaction support to impaired users or
anyone calling for special needs and assisted social interactions. Advertising agencies
are exploring how facial recognition technology can assist in targeting their commercials
and helping brands achieve a competitive edge. Video game consoles comprise cameras
able to track people in a given space and identify individuals in addition to having the
understanding of their activities [Mandal et al., 2014].

Physical access control may be the most obvious application for face identification
and verification. Due to security concern, OI technology might be implemented at
many areas around the world as it allows the police force and security companies to
monitor suspicious and undesirable persons. FV is usually combined with turnstiles
and door-locking mechanisms to grant/deny access to office buildings and/or restricted
areas [Ashbourn, 2014]. Mobile phones are composed of cameras that are able to verify
their users’ identities as another method of authentication to unlock devices. Payment
companies are slowly introducing smartphone selfies to authenticate the payment of
bills and checks [Okamoto et al., 2015].

In forensics, automated recognition systems replace the manual examination of
facial images and videos in search of a match with numerous mugshots. Additionally,
surveillance is the application domain holding most face recognition interest. OI can
be applied without the subject’s active participation and, indeed, without the subject’s
knowledge. Consequently, it is the most widely deployed biometric procedure for video
data when safety cannot be taken for granted [Galbally et al., 2014].
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1.2 Motivation

There is a great demand for face verification and open-set face identification
since several problems either cannot or do not have awareness of all possible persons’
identities. Strictly speaking, in most real-world scenarios, there is a limited knowledge
of known persons in comparison to innumerable unknown individuals.

For a clear understanding, think of an identification application for law
enforcement agencies where lawbreakers’ identities are doubtless of interest; however, a
large number of law-abiding individuals are not of concern. For that reason, an open-set
algorithm should dismiss all irrelevant subjects and focus only on identifying potential
suspects. In a similar manner, consider a verification-oriented application deployed for
access control, in which individuals constantly claim to have certain identity in request
for entrance grant. For each query, the verification procedure has to determine whether
the biometric samples belong to the claimed identity.

In respect to the aforementioned scenarios, ignoring unsought individuals and
neglecting facility access to unknown subjects are both a challenge and a requirement
when not all persons are acknowledged [Scheirer et al., 2013]. These challenges require
robust and accurate recognition systems. Therefore, they ended up motivating us to
study and design methods that can be efficiently applied to open-set face identification
and face verification.

1.3 Objectives

This work aims at providing efficient and straightforward techniques for the face
recognition tasks that deal with unknown individuals, namely face verification and
open-set face identification. We can divide the objectives into three different parts.
First, the idea is to propose methods that target mainly classification problems: in
open-set face identification it is to determine whether a given subject is known and,
for face verification, decide whether two faces have equivalent identity. Second, we
demonstrate that the information coming from multiple classifiers can improve results.
To this end, we evaluate how the methods’ performance responds to variable number
of hashing functions. Third, we investigate whether it is possible to offer a trade-off
between accuracy and simplicity.

In the following chapters, we attempt to show that an embedding of binary
classifier is a great alternative to conventional randomized search algorithms, such
as LSH, where queries are executed very quickly.
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1.4 Hypotheses

For the open-set face identification task, our main hypothesis is that vote list
histograms proceed differently whether we present probe face images whose identities
are enrolled in the gallery set or whether we examine unseen individuals. We presume
that when a probe sample is known, most classifiers would vote for the correct
identity or otherwise distribute the votes among distinct individuals that were originally
registered in the gallery.

For the face verification task, we assume that modeling the relation between
two face samples can be useful for increasing the robustness and performance. We
propose an approach that compares a pair of faces by extracting relational features and
computing the absolute difference between their feature vectors. We believe that any
pair of features of the same subject would present small differences and this difference
increases when face images come from different persons.

1.5 Scientific Contributions

This work is inspired on a method proposed by Santos Junior et al. [2016], which
provides a scalable closed-set face identification approach to galleries with hundreds and
thousands of subjects. However, instead of working on the closed-set face identification
task, we focus on solving open-set face identification and face verification problems.

According to experimental results, our approach reports competitive matching
accuracy in comparison with other state-of-the-art works on well-known datasets. The
predominant contributions of this master thesis for open-set identification and face
verification are:

• An adaptation of locality-sensitive hashing linked with different binary classifiers
in a supervised learning setting;

• Easy-to-implement algorithms with a few trade-off parameters to be estimated;

• Fast approaches that are capable of handling the combination of diverse feature
descriptors.

• Extensive experimental evaluation and discussion of the proposed algorithms on
the two aforementioned face recognition subcategories.

The following publications are related to this work in which the former consists
of a description of the open-set face identification method and the latter details the
implementation of the face verification algorithm.
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• Vareto, R., Silva, S., Costa, F., and Schwartz, W. R. (2017). Towards Open-Set
Face Recognition using Hashing Functions1. In International Joint Conference
on Biometrics (IJCB).

• Vareto, R., Silva, S., Costa, F., and Schwartz, W. R. (2017). Face Verification
based on Relational Disparity Features and Partial Least Squares Models. In
Conference on Graphics, Patterns and Images (SIBGRAPI).

1.6 Dissertation Roadmap

The remainder of this work is organized as follows: In Chapter 2, we review the
main open-set face identification and verification techniques, features and approaches
that focus on improving face recognition results. Chapter 3 presents some background
concepts for the research presented in this thesis: Support Vector Machines and Partial
Least Squares. In Chapter 4, we describe the core techniques: embedding of classifiers
for open-set face identification and face verification algorithms. Chapter 5 discloses
the experiments executed to validate and the discussions regarding the two proposed
approaches. Finally, in Chapter 6 we conclude this thesis with final remarks.

1Best Paper Runner-up Award at the International Joint Conference on Biometrics, 2017.



Chapter 2

Related Work

Research in automatic face recognition started during the 1960s. Around 50 years
ago, IBM stated that computers users could be recognized at a computer terminal by
something they know or memorize, by something they carry and even by a personal
characteristic [Jain et al., 2008]. Contemporary years have witnessed a significant
development on the face recognition field [Best-Rowden et al., 2014; Guo et al., 2011;
Wright et al., 2009; Yi et al., 2013]. In addition, several modeling systems have been
developed and deployed.

This chapter presents an overview regarding the main approaches employed in
two face recognition tasks. Besides, it also provides proper insights on hashing-based
approaches that might be employed to perform search on large scale face galleries.
This chapter reading is advisable for anyone who plans to delve into face recognition
or wants to become familiar with some of the state-of-the-art methods. Therefore,
this chapter is written with two major motivations: prepare the reader for a complete
understanding of the proposed approaches and compile relevant approaches available
for automated open-set face identification and face verification.

The following sections are not a complete literature review but a summary of
some of the most recent works on open-set face identification, face verification and
hashing-based approaches. More appropriate information on face recognition may
be found in the work of Jain and Li [2011] or in other well-endorsed published
documents [Ashbourn, 2014; Jain et al., 2008]. The works described herein show that
accurate and robust face recognition continues posing several challenges to computer
vision and pattern recognition scientists, especially under unconstrained scenarios. The
chapter is divided into three parts, according to the main problems addressed: (i) open-
set face identification, (ii) face verification, and (iii) hashing-based approaches, which
might be applied to face recognition to search in large galleries.

7



8 Chapter 2. Related Work

2.1 Open-set Face Identification

Only recently has open-set recognition been investigated in the literature.
Specifically for face identification, few works focus on finding thresholds that must
be satisfied so that probe individuals are identified as belonging to the gallery, i.e.,
a known subject. On the other hand, there have been more works intended to solve
closed-set problems, either in unrestrained scenarios or in relatively small datasets
[Tan and Triggs, 2010; Yi et al., 2013; Zhu et al., 2015b]. It is needless to say that
these studies accomplished substantial progress over the last ten years. However, face
recognition is still far from being solved since many applications have failed to work
properly on open-set scenarios (watch-list task).

The work of Kamgar-Parsi et al. [2011] consists in performing open-world face
recognition by learning a classifier for every single subject from a watch-list. Each
subject’s model is likely to accept images from corresponding targets and reject
everybody else. Liao et al. [2014] develop a protocol to explore all face images available
in the Labeled Faces in the Wild (LFW) dataset [Learned-Miller et al., 2016] under
verification and open-set identification scenarios. The authors concluded that open-set
recognition persists unresolved for large galleries, requiring further attention and effort
so that adequate learning algorithms can be assembled.

Support Vector Machines (SVM) are broadly used in image retrieval problems.
With the advent of one-class SVM [Schölkopf et al., 2001], some researchers became
involved in open-set tasks [Cevikalp and Triggs, 2012; Costa et al., 2012, 2014; Mygdalis
et al., 2015] as it seems reasonable to train a classifier with only known positive data.
Scheirer et al. [2013] provide thorough supervised open-set recognition formalization.
The authors expand existing one-class and binary SVMs with linear kernels to address
both generalized open-set recognition and face verification tasks. They introduce
the open space risk concept and focus on reducing the error function combining the
empirical risk over training data with the risk model for the open space.

The work proposed by Scheirer et al. [2014] also explores the concept of open space
risk as it restricts the classification to accommodate non-linear classifiers in multi-
class settings. The authors introduce a variation to the standard SVM, designated
Weibull-calibrated SVM (W-SVM), an algorithm that combines the useful properties
of statistical extreme value theory for score calibration with one-class and binary
support vector machines. Experiments demonstrate that W-SVM is considerably better
than common binary and multi-class support vector machine formulations. Scherreik
and Rigling [2016] detail the probabilistic open-set SVM, a straightforward machine
learning algorithm derived from W-SVM that attempts to determine independent
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probability classification thresholds for each class. In cases of restricted training time
or too much data, one-class SVM faces some issues since it generates kernel models
and, therefore, it is not very scalable.

Jain et al. [2014] announce a new algorithm for open-set recognition where models
encompass multiple known classes as well as provide the capability of detecting new
classes or rejecting unknown categories. Santos Junior and Schwartz [2014] propose
five different methods in a single work: one of them stands on discriminating face
samples between known and background set. The four remaining methods are based
on identification responses. They encompass Chebyshev inequality, SVM classifiers
and least squares. The approaches explore different features in the data, such as
commonplace attributes among enrolled subjects, margin separation or distribution
patterns between identification responses. From the five proposed algorithms, only
three presented promising results when few subjects are known. Moreover, they do not
attain satisfactory accuracy in large gallery sets.

Bendale and Boult [2015] introduce a formal definition to the open-world problem.
The authors think of Nearest Non-Outlier (NNO), an algorithm that continuously
update its inner model with additional unseen object categories and no need to retrain
the entire model. The algorithm adds object categories incrementally while detecting
outliers and managing open space risk. NNO minimizes the risk of falling into open
space, a space sufficiently far from any known positive training sample. The algorithm
rejects a query q as an outlier when it is too far from any training sample. As
consequence, it labels q as unknown when all classes reject q as an outlier. The authors
explain that as the number of classes in NNO incrementally increases, the performance
on both closed and open-set tasks seem to converge. It indicates that adding new
classes to the model may be limited by the open-space risk.

The work of Zhang and Patel [2016] proposes a new Sparse Representation and
Classification algorithm (SRC). The authors introduce a training stage to the SRC
algorithm so that it can be adapted to tackle open-set recognition problems by seeking
the sparsest representation in terms of the training data. Results demonstrate that
this method is not recommended for datasets with variations in pose and resolution.
Bendale and Boult [2016] expose a method that adapts deep networks to handle open-
set recognition as it introduces a new network layer, called OpenMax, capable of
estimating the likelihood of an input being from an unknown class. They use scores
from the penultimate layer to estimate whether the input is distant to any known
training data. Both methods depicted in this paragraph require large training sets in
order to accomplish high recognition performance either to span unexpected conditions
that may occur in the test set or train deep networks.
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All works described in this section are related to open-set identification problems.
Some of them learn classifiers taking into account only known positive data, others
explore feature open spaces, collection of hashing functions and even artificial neural
networks. On the contrary of our proposed method for open-set face identification,
most of these methods require massive data to generate good representational models.
Besides, some methods only support a restricted number of known classes or face
images, excluding even those datasets that do not reach the million scale in terms
of individuals. Our method is not evaluated at colossal scale, however it successfully
manages datasets containing thousands of individuals and does not require much data
for presenting good face discrimination.

2.2 Face Verification

Face verification is a largely explored research topic, so numerous works in the
literature have been studied in the last years [Guo et al., 2011; Hu et al., 2015; Wagner
et al., 2012; Wright et al., 2009]. For the most part, this section focuses on the face
verification task with unconstrained face images, i.e., an environment where images are
taken having no standard expression, pose, or lighting condition.

Simonyan et al. [2013] detect facial landmarks in favor of aligning and cropping
face images before extracting compact feature descriptors derived from fisher vectors on
densely sampled SIFT features. Ding et al. [2016] design a new feature descriptor that
computes the first derivative of Gaussian operator to lessen illumination effects before
detecting feature patterns at both holistic and landmark levels. Landmark detection-
based methods may attain higher performance at the cost of massive labeled training
data, which seldom is available in practical applications.

Taigman et al. [2014] come up with a facial alignment algorithm found on the
detection of fiducial points and facial 3D modeling. They also introduce a deep
neural architecture with nine layers to represent face images in a generalized manner.
Similarly, Zhu et al. [2015a] present a method that normalizes poses and expressions
in pursuance of canonical-view face images. In that work, the authors search for
facial landmarks that are later used for meshing the entire image into a 3D object.
Three-dimensional models tend to work well, but depending on the subject’s pose,
information rendered from three-dimensional techniques may end up hindering the
recognition performance. Besides, if the faces contain occluded regions, these regions
are generally mirrored, resulting in poor normalization results.
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Chen et al. [2013] propose a two-step scheme to obtain sparse linear projections.
The method compresses the original space into a low-dimensional feature so
that a sparse matrix that maps high-dimensional features into a low-dimensional
representation can be learned. Barkan et al. [2013] build high-dimensional face
representations using hand-crafted feature descriptors such as LBP and SIFT and
employ different dimensionality reduction techniques in LFW’s supervised and
unsupervised cases. In the final step, multiple representations and image features are
combined together using uniform weighting of cosine similarities. Ouamane et al. [2015]
adopt a rich multi-scale facial texture representation to enhance performance. The
authors propose a new dimensionality reduction technique that transforms the problem
of face verification under weakly labeled data into a generalized eigenvalue problem. In
general, methods comprised of high-dimensional spaces bring along several obstacles
that may prevent further exploration, such as training, computation and storage issues.

Hu et al. [2014] present a deep metric learning method that aims at learning a
Mahalanobis distance metric, maximizing inter-class variations and minimizing intra-
class variations. A deep neural network learns hierarchical nonlinear transformations
to fit a pair of face images into the same feature subspace so that discriminating
information can be spotted. Zheng et al. [2015] propose a linear cosine similarity
metric learning method based on triangle inequalities and gradient functions. Cost
and gradient functions are handled as a mathematical problem, which is solved with
an optimization algorithm. Metric learning methods do not usually hold the nonlinear
manifolds faces images lie on. Furthermore, nonlinear mapping functions are not
explicitly acquired, causing scalability problems.

Sun et al. [2013] introduced a hybrid convolutional network that learns relational
visual features so that identity similarities can be pointed out. The network computes
local visual features from two face images that are processed through multiple layers
for the sake of extracting high-level holistic features. The work presented by Ding
and Tao [2015] proposes a deep learning framework to represent faces using multi-
modal information. The framework is made up of complementary convolutional neural
networks that extract features, which are concatenated with a three-layer stacked auto-
encoder. Neural networks are usually hard to train and regularly require the tuning
of numerous parameters. Depending on the problem, there are simpler and faster
alternatives that may attain better performance, such as support vector machines and
decision trees.

Cevikalp and Triggs [2010] represent images as points in a linear feature space
and characterize each image set by a convex geometric region. A kernel trick allows
the approach to be extended to implicit feature mappings, thus handling complex and
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nonlinear manifolds of face images. Yang et al. [2013] create an efficient algorithm to
solve regularized nearest points with very low time complexity as they model with an
efficient iterative solver. Masi et al. [2016] describe a new procedure of enriching an
existing dataset with important facial appearance variations by reshaping the faces it
contains. The new synthesized images hold new intra-class facial appearance variations
and are an alternative to expensive data collection and labeling.

Former approaches compute low-level features [Dalal and Triggs, 2005; Lowe,
2004; Ojala et al., 2002] whereas others generate mid-level features [Huang et al., 2012b;
Lee et al., 2009]. On the contrary, Wen et al. [2016] propose a new loss function, namely
center loss, to efficiently enhance the discriminative power of deeply learned features in
neural networks. Very few methods attempt to handle cross-age face verification, for
instance, Du and Ling [2015] proposes an algorithm that excludes distracting features
in a fine-grained level while pre-serving discriminative ones.

The aforementioned works in this section compute similarities between pairs
of images to determine whether they represent a unique person. In pursuance of
good verification results, some authors detect facial landmarks while others explore
high-dimensional feature spaces. Few of them either generate facial 3D modeling of
train deep neural networks. Nevertheless, none of them explores embedding of binary
classifiers or evaluate their method on cross-dataset scenarios as we do in our proposed
algorithm for face verification.

2.3 Hashing-based Approaches

When it comes to large galleries, a natural alternative is to replace objects and
shapes by their feature vectors and, then, apply some sort of indexing and search
strategy in the new low-dimensional space. When it is not employed, searching for the
right identity in a dataset containing countless individuals seems pointless. A stable
refinement step casts aside individuals enrolled in the gallery that are improbable to
correspond to the probe sample identity with low computational penalty.

Hashing-based approaches employed to the face domain usually return a list of
relevant candidates that were previously enrolled in a gallery set taking into account
their similarity to a query face image. A common associated procedure, the nearest
neighbor search [Jegou et al., 2011], consists of pre-processing an entire set as it
calculates distances between probe and gallery samples. In most cases, we are not
interested in finding just the closest neighbor but several nearest neighbors. The k-
nearest neighbor (k-NN) search finds the k most similar gallery set images from the
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probe image whereas radius nearest neighbor (r-NN) search returns all gallery-enrolled
images located closer than some distance r from the query image.

Brute-force nearest neighbor approaches compute the distance of the probe face
image to all gallery samples. This aspect is unfeasible for large galleries because it
requires adequate algorithms to solve it efficiently. With that in mind, kd-trees are
capable of efficiently perform either r-NN or k-NN searches [Silpa-Anan and Hartley,
2008; Zaklouta et al., 2011]. When processing a probe image, the algorithm looks for
the closest-corresponding leaf. Then, it searches other face images stored in that leaf
before it scans nearby leafs in pursuance of similar faces. The search stops when the
distance from the probe image to the leaf is higher than the worst gallery face sample
found so far since it indicates that remaining leafs are not going to improve search
results. kd-trees are good search algorithms in low-dimensional spaces; however its
efficiency decreases when dimensionality grows.

Spectral hashing [Fowlkes et al., 2004] generates compact binary hash codes for
Approximate Nearest Neighbor (ANN) search. It reduces the computational cost based
on spectral partitioning making it feasible to apply them to very large gallery sets.
Shakhnarovich [2005] design a method to learn a weighted Hamming embedding where
the traditional Hamming distance is replaced with its weighted version in order to
reduce the collision likelihood of non-neighboring face samples. Kulis and Darrell [2009]
propose data-dependent and bit-correlated hash functions created to reduce the cost
function measuring the difference between the metric and reconstructed distance of the
corresponding binary embeddings in the Hamming space. The method occasionally
falls into poor local optima and is not evaluated on large-scale datasets. Ge et al.
[2013] optimize space decomposition with two different approaches: a method that
does not assume any data distribution and breaks the original problem into a pair of
sub-problems, and a second method that guarantees an optimal solution if the input
data satisfies a Gaussian distribution. Some experiments show that the approach
is exhaustive and may damage ANN performance [Kalantidis and Avrithis, 2014].
Furthermore, high-dimensional data may result in poor performance due to small
variation in distance values, stopping the method to differentiate similar and dissimilar
visual feature samples.

The work of Muja and Lowe [2014] generates multiple hierarchical cluster trees
to arrange binary vectors and searches for the nearest neighbors simultaneously
over multiple trees by traversing each tree in a best-first manner. Pham et al.
[2015] address the feature indexing problem using a linked-node m-ary tree (LM-tree)
structure to promptly build queries for both Exact and Approximate Nearest Neighbor
search (ENNS/ANNS) . The method produces a polar-space-based method of data
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decomposition in pursuance of the LM-tree. Along these lines, it narrows down the
search space by means of pruning rules. In the last stage, the authors bring up a
bandwidth search method to explore tree nodes.

Wang et al. [2015] conclude that scalable face recognition has not been properly
addressed yet, so they employ a fast-filtering procedure, which uses an approximation
method to return a list of candidates. In the end, the authors employ a slow
pairwise comparison that outputs a more accurate candidate list. Their method is
outperformed by the approach of Chen et al. [2016], a method that learns a robust
model from a large dataset characterized by face variations and generalizes well to
other datasets. Tang et al. [2017] propose a new supervised deep hashing algorithm for
scalable face image retrieval. The method is based on classification and quantization
errors as it synchronously learns feature representation, face indexing and classification
models. A deep convolutional network is introduced to learn discriminating feature
representations, generate hash codes and predict images labels.

The last direction of relevant work lies on Locality-Sensitive Hashing (LSH)
[Datar et al., 2004; Kulis and Grauman, 2012], a family of embedding approaches that
reduces the dimensionality of high dimensional data. It is data independent, that is, it
does not explore the data distribution. With LSH, there is a high probability feature
descriptors map to the same hashing location when they are located in neighboring
regions in the feature space. In other words, there is a great chance similar faces end
up having close hash codes.

Locality sensitive hashing was introduced by Indyk and Motwani [1998] to solve
NN search problems. The concatenation of all these functions is expected to reduce
the chance of collision among different-person face images. So, with an increasingly
number of hashing functions, it provides higher precision. LSH establishes a family
of hash functions H, containing arguments r, c, p1, p2 when p1 > p2 and c > 1. Thus,
for any two feature descriptors p and q, a hash function h ∈ H satisfies the following
conditions:

if d(p, q) ≤ r then Probability(h(p) = h(q)) ≥ p1

if d(p, q) ≥ cr then Probability(h(p) = h(q)) ≤ p2

Therefore, r represents the maximum distance d(p, q) that associates p and q to
equivalent buckets with probability p1. On the contrary, the second condition
guarantees that faraway feature descriptors are not likely to be mapped to the same
bucket. Typical LSH employs k hash functions {h1, · · ·hk} – particularly, k random
data-independent hyperplanes designed to hash input feature vectors – originated from
sampling p-stable distributions.
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On the contrary of conventional hashing algorithms that prevent collisions,
locality sensitive hashing maximizes the chance of similar-person collisions. LSH
indexes all feature descriptors in hash tables and searches for near descriptors via hash
table lookup. Consequently, each reference feature descriptor x is placed into a bucket
h(x). According to Wang et al. [2012], given the probe face feature descriptor q, the
items lying in the bucket h(q) are described as near items of q. There are distinct LSH
families for different distances or similarities, including Hamming distance, Jaccard
coefficient to name a few.

When a gallery set is composed of millions of subjects, the value of k should
be large enough to reduce collisions between different persons, increasing precision
and reducing recall. On the other hand, a large value for k also reduces the collision
between feature descriptors from the same subject. To improve recall, hash functions
can be gathered in l groups {g1, · · · gl} of k hash functions (gi = {hi,1, · · ·hi,k}). The
combination results in l hash tables and l × k hash functions. Due to theoretical
guarantees for random projection-based LSH, many large-scale search applications
based on LSH have been developed [Kulis and Grauman, 2009, 2012; Wang et al.,
2010].

The approaches described in Chapter 4 replace LSH’s random projections with
binary classifiers, which are suitable to provide discriminability among individuals
known during the training step. Instead of associating a conventional binary string
to every single face image sample, the proposed methods compute weighted binary
strings whenever probe images emerge. The weights associated to each string bit are
obtained from response values of the corresponding binary classifiers. As the approach
regards an embedding of classifiers, the string eventually becomes a vector of response
values. Then, the similarity score is updated every time a new bit is estimated for an
unknown test sample. As a result, our methods operate in a very similar way to LSH
without focusing on face hashing since the nature of this work is to certify whether an
identity is known or if two face images correspond to the same individual.





Chapter 3

Background Concepts

Hashing methods for multi-dimensional indexing have been widely employed in
the computer vision field [Irie et al., 2014; Wang et al., 2013; Zhang et al., 2012] as it
seems to be a trend to embed visual features into compact hash codes.

This chapter presents some fundamental background concepts for the research
topic of this work. It starts with a quick description of two machine learning methods,
Support Vector Machines (SVM) and Partial Least Squares (PLS), in Sections 3.1 and
3.2, respectively. Then it summarizes an interesting method that combines Locality-
Sensitive Hashing (LSH) with multiple support vector machine models. Last, it refers
to another hashing method that replaces the conventional SVM with binary partial
least squares models.

Figure 31: This is the overview of the two background methods under the face image
retrieval scenario. The procedure starts with the feature extraction of the entire gallery
set. Note that the filtering step reduces the number of evaluations in the classification
step with reduced computational cost and, consequently, is the main contribution of
both works.

17
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Approaches described in Sections 3.3 and 3.4 are a complementary way to
reduce computational time, memory usage and distance calculation cost rather
than an alternative to indexing structures. A pipeline overview of the background
methods in the face image retrieval context is presented in Figure 31. Instead of
increasing the likelihood of colliding neighboring visual features, Random Maximum
Margin Hashing [Joly and Buisson, 2011] and Partial Least Squares for Face
Hashing [Santos Junior et al., 2016] target data scattering on account of learning
hash functions and offering discriminability among items (i.e., subjects for the face
recognition domain) in the feature space. By training based on exclusively random
fractions of the data, disregarding the training samples proximity, the following
methods show that it is feasible to consistently build independent hash functions.

3.1 Support Vector Machines

The field of machine learning has gone through intense advancement since the
advent of kernel tricks for Support Vector Machine (SVM) during the 1990s. SVM
is a collection of supervised learning methods that are broadly used for classification,
regression and outliers detection. It is quite effective in high-dimensional spaces even in
cases when the space dimensionality is greater than the number of samples [Steinwart
and Christmann, 2008].

Figure 32: Illustration of a maximum-margin hyperplane and margins for an SVM
trained on data points (samples) from two different classes. Data points on the margin
are commonly called support vectors.
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Figure 3.2 demonstrates how SVM searches for optical separating hyperplanes
among classes as it attempts to maximize the margins between classes’ closest points.
Boundary-lying points are called support vectors and the centered-margin is the
optimal separating hyperplane.

~w · x− b = 0 (3.1)

|~w · x− b = 0|
‖~w‖

=
±1

‖~w‖
(3.2)

Linear SVM considers a training dataset of n points of the form
(x1, y1), · · · , (xn, yn) where yi is either the −1 or +1 label, which points out the class
xi belongs to. Point xi is a p-dimensional feature vector. The maximum-margin
hyperplane, which dissociates data points having yi = +1 from those with yi = −1,
is usually noted as a set of points x ∈ X satisfying Equation 3.1 where ~w is the
normal vector to the hyperplane. The distance between the separating hyperplane to
the positive and negative support vector is respectively +1

‖~w‖ and
−1
‖~w‖ , as demonstrated

in Equation 3.2. To that end, 2
‖~w‖ is the total distance between the support vectors

in such a way that maximizing the distance within the support vector hyperplanes is
equivalent to minimizing ‖~w‖.

SVM selects the hyperplane that best segregates two classes. When more than a
single hyperplane is able of segregating classes well, maximizing the distances between
nearest data points of each class and the hyperplane is the main criterion employed for
identifying the best hyperplane. Having a proper margin is a synonym for robustness
since low-margin hyperplanes hold higher probabilities of miss-classification. Linear
SVMs are efficient when applied on linearly separable or linearly distributed data points
in a way that soft-margin-based machines effectively cope with noise and outliers.

When SVM cannot establish a linear separation, data points are taken into a
higher-dimensional space by through a kernel trick where they may become linearly
separable. The addition of kernel methods enables SVM to run on higher-dimensional
feature spaces with no data recalculation in the new space [Cristianini and Shawe-
Taylor, 2000]. Kernel functions estimate the inner products from images of all pairs
of data in the original space since this arithmetic is computationally cheaper than
the generation of new coordinates. The kernel trick challenge is to find a mapping
transformation φ = Rp → Rq, q > p, so that data points become linearly separable
in Rq. With a mapping function φ, the new classification pipeline first transforms a
training set S ∈ Rp into S ′ ∈ Rq prior to training a linear SVM classifier and, at



20 Chapter 3. Background Concepts

testing stage, a probe sample x is first transformed to x′ = φ(x) before it is presented
to the classifier. Higher-dimensional feature space usually intensifies support vector
machines’ generalization error, although given a reasonable number of samples the
algorithm maintains its good performance.

3.2 Partial Least Squares

Partial Least Squares (PLS) is a fast and effective regression technique based
on covariance [Rosipal and Krämer, 2006; Wold, 1985]. It captures the relationship
between observed variables (predictors) through latent variables and associates aspects
from principal component analysis and multiple regressions. PLS is capable of fitting
many response variables in a unique model. Consequently, it models the response
variables in a multivariate manner so the results can significantly contrast with those
calculated for the response values individually.

Components of a partial least squares model are chosen based on the amount
of variance they explain in the predictors and between predictors and their responses.
PLS works very well when the number of explanatory variables is both high and likely
to be correlated and does not require a large quantity of training samples. The latter
aspect is the main motivation for employing PLS in this work, since there are not many
samples available for learning the models, preventing the employment of deep learning
techniques in the process [Bengio et al., 2013]. In general, when observed variables are
highly correlated, the number of components in the PLS model tends to be far lower
than the number of predictors.

X = TP T + E (3.3)

Y = UQT + F (3.4)

The purpose of partial least squares is to create latent variables as a linear
combination of the independent zero-mean variables X and Y [Wold, 1985]. More
precisely, X represents a matrix of feature descriptors whereas Y describes a vector of
response variables. Then, PLS searches for latent vectors that can be simultaneously
decomposed into Equations 3.3 and 3.4 in order to identify the maximum covariance
between these variables. Matrix Tn×p portrays latent variables from feature vectors and
matrix Un×p denotes latent variables from target values. Variables Pp×d and Q1×d can
be compared to the loading matrices from principal component analysis. Eventually,
variables E and F represent residuals [Wold et al., 1987].
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Algorithm 1: NIPALS(Xn×d, Yn×1, p)
Data: Xn×d and Yn×1 stand for visual feature vectors and target values,

respectively, holding n samples, d dimensions and p factors.
1 for i← 1 to p do
2 start ui randomly or with some column of X
3 repeat
4 wi ← X ′ui/ ‖X ′ui‖
5 ti ← Xwi
6 qi ← Y ′ti/ ‖Y ′ti‖
7 ui ← Xqi
8 until convergence;
9 bi ← uiti/ ‖ti‖

10 pi ← X ′ti/ ‖ti‖
11 X ← X − tipi
12 Y ← Y − bi(tip′i)
13 return T, P, U,Q,W,B

14 end

The typical algorithm for calculating PLS regression components/factors is the
Non-linear Iterative PLS (NIPALS). Algorithm 1 presumes that the X and Y variables
have been altered to have means of zero. An alternate mechanism for PLS components
is the SIMPLS algorithm [De Jong, 1993]. SIMPLS algorithm was literally derived
to solve specific objective functions, like maximizing covariance. Andersson [2009]
observed that NIPALS is among the most stable algorithms for PLS and, while slightly
less accurate, SIMPLS is faster.

β = W (P TW )−1T TY. (3.5)

ŷ = ȳ + βT (x− x̄) (3.6)

Even though the distinctions between NIPALS and SIMPLS are of theoretical
significance, the practical implications of their difference may well be of minor
relevance. Therefore, the PLS for regression we adopted employs NIPALS algorithm to
estimate the low-dimensional data representation [Rosipal and Krämer, 2006]. NIPALS
computes the highest covariance between latent variables T and U and produces a
matrix of weight vectors Wd×p which determines the regression coefficients vector β
using least squares as detailed in Equation 3.5. The PLS regression output for query
image’s feature vector is given by Equation 3.6 where ȳ is the sample mean of Y and
x̄ the average values of X.
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3.3 Random Maximum Margin Hashing

Joly and Buisson [2011] come up with the Random Maximum Margin Hashing
(RMMH), an approach that learns hash functions with the maximum margin criterion.
According to the scheme, positive and negative labels are arbitrarily generated by
randomly sampling m data-independent hyperplanes and randomly labeling half of the
items as positive and the other half as negative.

The authors state that the independence deficit among hash functions is the main
matter affecting the efficiency of data-dependent hashing methods in contrast with
data-independent ones. For that reason, they propose an algorithm that uniformly
distributes hash values and boosts the collision probability of close visual features
while reducing the collision probability of irrelevant pairs of feature descriptors.

According to the authors, data-dependent hash functions can hold up the
performance of a method as the number of irrelevant collisions continues to occur even
with an increasingly number of m hash functions (hash code length). To overcome this
issue, they train balanced and independent binary partitions of the feature space. For
each hash function, RMMH selects all subjects from the dataset, which comprises the
set S, and randomly labels half of them with +1 (positive partition) and the other half
with −1 (negative partition). These positive and negative samples are conventionally
denoted as x+ and x−, respectively. The hash function h(x) is then computed by
training a binary classifier hθ(x) in the following:

h(x) = argmax
θ

|S|
2∑
i=1

hθ(x
+
i )− hθ(x−i )

With RMMH’s balanced strategy, h(x) attempts to minimize the probability a feature
sample spills over the boundary between positive and negative classes by maximizing
the margin between x+ and x−. Hyperplanes that maximize the margin in Euclidean
space among arbitrary balanced samples are easily generated with a SVM algorithm,
justifying its choice over other classifiers. According to the authors, large margin
classifiers have low capacity and, consequently, contribute for a better generalization
capability, especially on restricting overfitting occurrences.

During the search procedure, which is very similar to the one from LSH, hash
codes are put side by side with the Hamming distance ranked accordingly. However,
the authors do not focus on finding the k-nearest neighbors in the feature space, but
the most relevant classes. They relax the classification tolerance to the top five best
ranked classes, resulting in a small list of candidates.



3.4. Partial Least Squares for Face Hashing 23

3.4 Partial Least Squares for Face Hashing

Santos Junior et al. [2016] concentrate efforts on the scalable face identification,
that is, when galleries contain several individuals, making it unsuitable for conventional
identification algorithms to respond under low computational time.

Similarly to RMMH, Partial Least Squares for face hashing (PLSh) is also inspired
by the family of methods regarded as Locality-Sensitive Hashing (LSH), the most
widely employed large-scale image retrieval in the literature; and PLS, a technique
extensively used to analyze quantitative data, business management and several works
regarding face recognition.

PLSh consists in filtering subjects in the gallery. The filtering approach provides
a shortlist to the face identification so that it evaluates only the subjects presented
in that shortlist. The method encompasses data dependent hash functions and hash
functions generated independently from each other. Independently generated hash
functions are required to produce uniform distributed binary codes among subjects
in the gallery. Data dependent hash functions provide better performance in general
since they consider characteristics of the data, such as discriminability among different
labels and dimensions, resulting in more consistent hash functions [Indyk and Motwani,
1998].

In the training stage, subjects in the face gallery are randomly divided into two
balanced subgroups x+ and x−, as it is done for RMMH. This process is repeated m
times. In other words, a number of m PLS regression models (also denoted hashing
functions) are learnt to distinguish individuals in subset x+ from individuals in x−.
The association of a subject to one of the two subsets consists in sampling from a
Bernoulli distribution with probability p = 0.5, indicating a fair sampling distribution1.
Therefore, it can be viewed as a bit in the Hamming embedding and the Bernoulli
distribution guarantees that Hamming strings are evenly distributed among all subjects
in the face gallery.

During testing, a probe sample is presented to each one of them hashing functions
in order to obtain a regression response r. A vote list, having size analogous to
the number of subjects and its elements initially filled with zeros, is established and
continuously updated with regression values ri according to the subject index i added
to the positive subset of the corresponding hash model. In the end, the list of subjects is
sorted in descending order and the top candidates are presented for face identification.

1The Bernoulli distribution is a yes-no question case of the binomial distribution where a single
experiment is conducted, outputting a single bit of information whose value is true|positive with
probability p and false|negative with probability 1 − p. If p = 0.5, it implies that a sample has
equivalent probability of being labeled true|positive or false|negative.





Chapter 4

Methodology

This chapter describes the methods employed in the proposed approaches: an
ensemble of classifiers is created as we group several classifiers that enhance the overall
performance. For that purpose, it is only required that each classifier alone outperforms
randomness. The methods were inspired by the ideas detailed in Chapter 3, but
adapted for the face recognition scenario.

We implement two approaches that convert the original data into a metric space
where a Hamming distance seems to represent well the similarity between gallery and
probe images. The algorithms reported here use an embedding approach in conjunction
with binary classifiers, and achieve competitive query performance. Our methods offer a
balance between simplicity and learning speed on one hand and accuracy and flexibility
of the learned similarity concept on the other hand. To our knowledge, this is the first
combination of binary support vector machines or partial least squares models with
locality-sensitive hashing to open-set face identification and face verification.

A practical advantage of the approach for open-set face identification presented
in this work is that the search for faces resembling a given probe image is reduced to
a standard search in the metric embedding space and thus it can be executed quickly.
Given a dataset of numerous faces and a probe image, the idea is to retrieve identities
from the dataset that are similar to the query without comparing it to every subject
sample enrolled in the gallery. Therefore, the embedding of classifiers retrieves with
high probability individuals from the gallery set with smallest Hamming distance to
the probe face image.

We consider a variation of partial least squares for face hashing in open-set tasks.
The proposed methods differ from PLSh on how vote-list histograms are interpreted
and on how hash models are partitioned. Despite of their easy implementation, the
approaches present competitive performance with other literature open-set methods.

25



26 Chapter 4. Methodology

Although both proposed approaches only differ in few aspects, we recommend that
readers explore each method separately. For that reason, some sections may sound
redundant as we do not expect anyone to browse the entire work in pursuance of a
complete comprehension of both methods.

4.1 Open-set Face Identification

The approach disclosed in this section takes advantage of fitting features from
high-dimensional spaces into a more compact space. Instead of having LSH splitting
the feature space by establishing random regressions, we appraise Support Vector
Machines (SVM), Partial Least Squares (PLS) and Artificial Neural Networks (ANN)
for discriminability enhancement and classification.

Like most supervised learning problems, the method is based on three canonical
steps: extracting features, training and testing. Features are obtained with Histograms
of Oriented Gradients [Dalal and Triggs, 2005] and VGGFace CNN [Parkhi et al., 2015]
feature descriptors. The approach analyzes feature vectors and their corresponding
identities to learn an inferred function for every single hashing model, which are used
to generate vote list histograms whenever a query is requested. Figures 41, 42, 44 and
45 present the pipeline of the proposed approach.

To determine whether a face image is enrolled in the gallery of individuals,
visual features are obtained from a query face image. Next, the extracted features are
presented to each hashing function in order to avoid comparing the probe feature vector
to all gallery subjects. A vote list histogram is hence set up with size in accordance
with the number of individuals enrolled in the gallery set during training time. If
the algorithm establishes that a probe image corresponds to an enrolled identity, the
vote list histogram turns into a list of candidates since the method only considers the
individuals that closest match the query face image.

The list of candidates is a subset of the vote list histogram. In the face
identification stage, one could consider the one-against-all classification scheme
described by [Schwartz et al., 2012]. This strategy attributes +1 to all samples
interrelated to the chosen subject and −1 to the samples from all remaining individuals.
In other words, all features corresponding to the selected individual are used as
examples, while all unalike visual features are adopted as counterexamples. Samples
belonging to subject will receive positive responses. This process is reproduced for
every single subject in the list of candidates.
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4.1.1 Training Stage

We start the training stage by randomly partitioning all subjects registered in
the gallery set into two disjoint collections: positive and negative sets. In pursuance of
a balanced division, samples are drawn from a Bernoulli distribution (see Chapter 3.4
for footnote reference) in the interest of associating a gallery subject with the positive
class when the distribution value gets closer to one or with the negative class otherwise.

Figure 41: Training (part I): Feature descriptors are acquired for all subjects’ samples
before partitioning them into positive and negative sets. Then, different classification
models are generated containing different subjects in each collection. As can be noticed
in this example, each classifier shares the very same eight individuals; however, their
distributions among positive and negative sets are totally unequal.

Just as we split all subjects into positive and negative sets, we guarantee that
each collection contains approximately the same number of individuals. Furthermore,
we make sure that all samples belonging to a certain individual reside in the same class.
At that moment we execute a learning algorithm so that a single model is created for
both positive and negative collections in a binary classification fashion.

The generation of binary classifiers for hashing is repeated several times and,
therefore, each classification model contains different individuals belonging to the
positive and negative collections. These classifiers are essential because they determine
whether a query face sample is a member of the positive or negative class. Feature
descriptors are obtained from samples in the positive set with target values equal to
+1, in contrast to samples in the negative set, which hold target values equal to −1.
These features must be extracted and combined with their corresponding target values
so that classification models can be successfully learnt.
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(a) A random partition splits the dataset so that individuals A, D, E and F are added to the
positive collection and subjects B, C, G and H are added to the negative set in classifier c1.

(b) A new random partition splits the dataset so that individuals B, D, E and H are added
to the positive collection and the remaining ones are added to the negative set in classifier c2.

(c) The final random partition splits the dataset so that individuals A, B, G and H are added
to the positive set and the left individuals are inserted into the negative set in classifier cm.

Figure 42: Training (part II): Different classification models are generated containing
different subjects in each collection. In each partition, opaque individuals are added
to the positive set whereas translucent subjects are added to the negative set.
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4.1.2 Testing Stage

At the time we move to the testing stage, we engage the same feature descriptors
employed during the training step to extract features from query face images. We
present this feature vector to each one of the classifiers ci ∈ C in exchange for the
response value ri. Given a probe face image, we start a vote list replete with zero
values. Each position in the vote list histogram corresponds to a subject from the
gallery of known subjects that is required for training. Each classification model has
a record of which individuals were randomly categorized as pertaining to the positive
and negative set.

As we compare a probe sample to all classification models, we increment each
model’s response value ri on the vote list only for those subjects belonging to the
positive set. In the end, we sort the vote list in decreasing order in behalf of keeping
individuals with higher probability of matching the probe sample on the top of the
vote list ranking. In essence, we want to find out how much the top scorer, namely the
leading subject of the sorted vote list, stands out from all other individuals.

When a classifier ci’s response score ri is closer to +1, it indicates that the query
image sample is very much alike the subjects in the positive collection. The algorithm
votes for individuals from ci’s positive class as it only increases their bins in the vote
list. Additionally, if classifier ci’s score is closer to −1, then the query image sample
probably resembles subjects in the negative set, which results in a subtraction of the
vote list bins that correspond to ci’s positive subjects.
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Figure 43: Two queries for the same individual of the FRGCv1 dataset when the subject
is either registered in the gallery set (a) or an unknown person (b). A considerable
number of subjects from the gallery set turns into candidates when there is no clue
what the identity for the query image is.
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(a) A vote list histogram is initialized containing all individuals enrolled in the gallery set
during training time. The probe sample is projected to every classifier in search for a response
value r.

(b) The probe sample’s feature vector is presented to classifier c1 ∈ C in exchange for a
positive response value r1. Bins in the vote list that correspond to the subjects from c1’s
positive collection are incremented with the response score. E.g.: A, D, E, and F.

(c) The probe sample’s feature vector is now presented to classifier c2 ∈ C in exchange for
a positive response value r2. Bins in the vote list that correspond to the subjects from c2’s
positive collection are incremented with the response score. E.g.: B, D, H and G.

Figure 44: Testing (part I): Same features descriptors employed in the training stage
are used to extract features from the query image. The probe feature is compared to
all classifiers and their response values are used to increment a vote list. Illustration
continues on the following page.
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(a) The probe sample’s feature vector is presented to classifier cm ∈ C in exchange for a
negative response value rm. Bins in the vote list that correspond to the subjects from last
classifier’s positive collection cm are decremented with the response score in cases when it is
not greater than zero. E.g.: B, G, H and A.

(b) The vote list is sorted in decreasing order in the interest of computing the ratio of the
top scorer to the remaining individuals. If the ratio is higher than a specified threshold, we
declare the probe sample as a known subject. If not, the pipeline halts since there is not any
reason to continue searching for a subject with low probability of being previously enrolled in
the gallery set.

Figure 45: Testing (part II): The probe feature is compared to all classifiers (hashing
functions) and their response values are used to increment a vote list. If the ratio of the
top scorer to a fraction of the remaining subjects satisfies a threshold, it is considered
a known individual. Otherwise, the probe sample is classified as unknown due to the
absence of a highlighted bin in the vote list histogram.

Consider score ri being +1 for any classifier every time the corresponding identity
to a probe sample lies in the positive collection: even when other positive-class
individuals from classifier ci receive equivalent score, their respective bins in the vote
list will eventually differ due to the random partition of all subjects at training time.
Therefore, any chance of repeatedly having two or more subjects in the positive class
declines as the number of M classifiers escalates, providing each gallery set subject a
unique binary signature during training time. Figures 44 and 45 clarify how the testing
stage works in the identification task.
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Figure 43 illustrates two different face queries: one corresponds to querying
a gallery-enrolled individual and the other searches for a subject that has no
corresponding identity. Notice that there is a highlighted bin in Figure 43a when the
query image has a matching identity, a prospect that it probably represents the probe
sample’s identity. On the contrary, in Figure 43b several bins are incremented when
there is not a single subject from the gallery that corresponds to the probe sample.

Different from the method of Santos Junior et al. [2016] that sorts the vote list
in descending order of incremented scores to generate a list of candidates for face
identification, we arrange the vote list in the interest of computing the ratio of the top
scorer to the remaining individuals (the ratio estimation is detailed in Chapter 5.2.1),
if the ratio is higher than a threshold, we declare the probe sample as a known subject,
as it would be for Figure 43a. The proposed method also differs from the original
implementation in some aspects: we store both positive and negative collections for
every regression model. Moreover, we increment regression values on the vote list even
when they are negative in an attempt to intensify the difference among the vote list
scores.

4.1.3 Artificial Neural Network

In pursuance of better recognition results, we propose a third approach by
replacing the standard Partial Least Squares (PLS) and Support Vector Machines
(SVM) with Artificial Neural Network (ANN) classifiers. ANNs are extensively applied
to research due to their capacity of dealing with problems stochastically, which often
allows approximate solutions for optimization problems like fitness approximation.
Elementary ANNs are feed-forward artificial neural networks comprising at least two
layers of nodes and capable of distinguishing non-linearly separable data. In fully-
connected artificial neural networks, each node i in one layer connects with a certain
weight wij to every node j in the following layer [Yegnanarayana, 2009].

Most ANN models target at modeling the relationship of observable variables
and determining whether a probe sample’s identity is enrolled in the gallery set at
training time. The idea of applying artificial neural network models in place of PLS
or SVM-based hashing functions was encouraged by the works of Lin et al. [2012]
and Mouazen et al. [2010]. Despite the fact the authors evaluate the performance of
machine learning algorithms on the study of respiratory ventilation and soil properties,
they inferred that artificial neural networks could equal or exceed the performance of
regression-based approaches.

As depicted in Figure 46, we propose a small network architecture with three
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layers: input, hidden and output layer. Each node is a neuron with a nonlinear
activation function that is connected to every neuron in the previous layer. The hidden
layer is set up with rectification non-linearity (ReLU) and the last layer is equipped
with a soft-max function. Therefore, each node in one layer connects with a certain
weight w to every node in the subsequent layer. This was the chosen architecture
because it reported the best results in an exploratory experiment with several other
architectures, considering different numbers of neurons and depths.

The employment of an artificial neural network is exclusive to the identification
task. Our goal is to generate a new collection of classifiers as an alternate approach to
PLS and SVM embeddings. Similarly, for a probe sample, the network outputs scores
closer to +1 indicating there is a high probability of the probe sample being in the
positive collection. Otherwise, it returns response scores closer to −1.

…

Feature Vector

ReLU
64 neurons

SOFTMAX
2 neurons

Is this face
in the pos/neg 

collection?

+1 (Pos)

-1 (Neg)

Figure 46: The three-layer artificial neural network designed to be in place of each PLS
or SVM model. The network is fed up with feature vectors to learn weights that will
determine whether the probe is closer to the positive or negative collection.

We present a shallow artificial neural network to enable very rapid binary training
and low implementation complexity in order to guarantee little execution time contrast
to the linear regression models previously described. Due to its training speed and few
tunable parameters, the method has great applicability for approaches that contain an
embedding of classifiers or require frequent retraining and online training. The network
architecture for classification is a three-layer neural network holding an input layer, a
hidden layer of nonlinear units, and a linear output layer. It works very much alike
the PLS approach: a matrix of weight vectors is calculated considering the results of
each ANN model and the regression response for a query image’s feature vector is then
returned.
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4.2 Face Verification

In this section, we describe the proposed approach for performing face verification.
The method compares pairs of face images as it extracts relational features with
VGGFace CNN descriptor [Parkhi et al., 2015], assuming the hypothesis that the
relation between two faces are valuable for increasing the performance of the verification
task. Figure 47 illustrates the designed face verification process, described in details in
the next sections.
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Figure 47: Overview of the proposed face verification approach. Training: Disparity
feature vectors are obtained for all pair of subjects before they are partitioned into
genuine (same) and impostor (not-same) sets. Then, different classification models are
learned containing different feature samples in each collection. Testing: The disparity
features are extracted from a pair of testing images to compose a feature vector which
is then classified by all models ci ∈ C and their response values ri are used to estimate
the label (genuine or impostor), based on a majority voting scheme.

Following sections specify thorough aspects of the three main stages for face
verification: a distinctive extraction of features and the conventional training and
testing procedures. We are inclined to believe that pairs of features of same individuals
hold little differences. On the other hand, this difference increases while comparing
images from different persons. Multiple classification models based on SVM or PLS
are employed to determine if the given pair of images belongs to the same subject
(genuine) or to different subjects (impostor).
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4.2.1 Feature Extraction

Different from considering a feature vector for each image independently, we
extract relational features for pair of faces as follows: First, the verification approach
extracts deep features for all images employing the VGGFace convolutional neural
network descriptor [Parkhi et al., 2015]. Then, it computes the absolute difference
between them and stores this new feature vector in order to build and execute the
classifier. Figure 48 illustrates the process of extracting disparity features among two
face images.

VGGNet
f(i, j) = |fi - fj|

fi

fj

Figure 48: Feature extraction overview for a pair of face images. Two face images i
and j input a trained convolutional neural network that extract their correspondent
features vectors. Next, the algorithm computes the absolute difference between the
two descriptors. This operation outputs a new feature vector, denominated disparity
feature vector, which determines how similar the two image samples are. Note that
when images i and j have identical identities, their disparity feature vector is added to
the genuine set, otherwise it is stored in the impostor set.

For the face verification task, features extracted directly from face images are
never presented to any classifier as they are only employed to compute relational feature
vectors. Whenever two random pictures belong to the very same subject, the resulting
disparity feature vector is exclusive to positive collections or to the negative ones,
otherwise.

After the feature extraction process, we perform the training and testing
classification steps, as depicted on Figure 47. From now on, we refer to feature vectors
derived from the absolute difference as disparity feature vectors or simply disparity
features. The main hypothesis lies behind the assumption that two face images of the
same subject hold small differences. However, this difference is likely to rise when we
cope with a pair of images from different subjects. Feature vectors that represent a
pair of faces from the same person are labeled as same person (genuine) and feature
vectors extracted from a pair of faces of different people are labeled as not-same persons
(impostor).
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4.2.2 Training Stage

This approach learns classification models capable of differentiating same-subject
probe images from contrasting ones. The training stage randomly samples disparity
feature vectors that were previously stored in two disjoint sets: same and not-same.
While the former relates to pairs of samples from the same subject, the latter refers
to pairs of samples from different subjects. In pursuance of a balanced division, these
disparity feature samples are drawn from a uniform distribution.

The positive class contains only features selected from the same collection and
the negative class only contains samples selected from the not-same collection. Then,
a binary classification model is learned considering the selected samples and classifies a
pair of probe samples as being same and not-same. The generation of binary classifiers
is repeated m times1 by selecting different disparity feature vectors from the same and
not-same classes to capture different aspects of the data and allow the complementarity
among the classifiers. Disparity feature descriptors are obtained from samples in the
positive set with target values equal to +1, in contrast to samples in the negative
set, which hold target values equal to −1. Relational disparity features must be
computed and joined with their corresponding same/not-same target values. Thus,
the classification models can be successfully learnt as shown in Figure 49.

The proposed face verification approach falls into a technique called Bootstrap
Aggregating [Breiman, 1996], well-known for the acronym bagging. Bootstrap
aggregating methods use multiple homogeneous learning algorithms by combining
classification models trained on randomly generated training sets to achieve better
predictive performance than the composing classifier alone. Breiman et al. [1994]
demonstrate that neural nets, classification and regression trees are unstable, resulting
in favorable results when bagging is employed.

The considered training set S is composed of disparity feature vectors, which
derives from the dataset’s original image features (shown on Figure 48). The face
verification approach holds a sequence of classification models {ci ∈ C : |C| = M}, a
series of different training subsets si ∈ S consisting of F independent disparity feature
vectors each. Every classifier inputs f : f < F disparity features to compose each of
the two classes, an operation that is repeated M times. The pairs of probe feature
vectors that compose disparity features are drawn at random so that they may come
out repeated times in any particular subset si. Bagging is able to improve overall
accuracy due the stable construction of the classification set C where a minor variation
between subsets si and sj results in big changes for classifiers si and sj, respectively.

1The number m of hashing models is a parameter defined by the user.
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(a) First random partition splits same-subject disparity features so that samples from
individuals A, D, E and F are added to the positive set in classifier c1. Relational features
derived from distinct subjects are added to the negative collection.

(b) Second random partition splits same-subject disparity features so that samples from
individuals B, D, E and H are added to the positive collection in classifier c2. Relational
features derived from distinct subjects are added to the negative set.

(c) Final random partition splits same-subject disparity features so that samples from
individuals A, B, G and H are added to the positive collection in classifier cm.

Figure 49: Training: In each partition, same-individual relational features are added to
the positive set whereas unequal-individual disparity features are added to the negative
collection.
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4.2.3 Testing Stage

In the testing stage, the method computes the disparity feature vector among
the target and query samples and presents the new feature to each of the M binary
classifiers, which results the response value ri, where i = 1, 2, . . . ,M . In the end, it
computes the majority voting to find which label must be designated to the probe,
i.e., genuine or impostor. The former label is attributed when the pair of samples is
classified as belonging to the same subject.

When a classifier ci’s response score ri is closer to +1, it indicates that the probe
disparity feature vector is very similar to features from the positive collection, which
are generated from a pair of same-identity extracted features. On the other hand, if
classifier ci’s score is closer to −1, then the query disparity feature vector probably
resembles disparity features in the negative collection. As we present a probe disparity
feature vector to all learning models, we store each model’s response value ri, which
corresponds to the output of classifier ci ∈ C. Eventually, we sample2 each response
value ri in order to obtain a discrete value r∗i , resulting in a binary response vector ~r of
size M when appended together. The prediction is described in Figures 410 and 411.

Rather than just outputting same or not-same binary labels, the algorithm
computes ultimate response u as the ratio between the number of positive matches
(r∗i > 0) to the total number of binary classification models in the following form:

u =

∑M
i=0 r

∗
i

M
: r∗i > 0, r∗i ∈ ~r

Due to sampled elements in vector ~r, each r∗i ∈ ~r holds either +1 or −1 values. Then,
u containing values greater than 0.5 indicates that most classifiers consider the probe
disparity feature to be same subject, and not-same otherwise. Therefore, we obtain a
probability estimate of the positive class (target score), which is used to compute the
Receiver Operating Characteristic (ROC) curves.

Similar to the open-set face identification approach, the probability of frequently
having two or more classifiers composed of similar relational disparity features among
their positive and negative collections decreases when the number of disparity feature
rises in each classifiers’ positive and negative set. However, no vote list histogram is
generated since there is not any need of establishing a ranking of candidates. As a
consequence, the proposed method does not require keeping records of feature vectors’
labels due to the fact they are not employed in the testing stage.

2Sampling is the process of measuring the instantaneous values of continuous-time signal in a
discrete form.
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4.3 Technical Comparison

The proposed approaches for open-set face identification and face verification
share several common aspects. Nevertheless, they differ in many others as well. The
methods are developed for different purposes, once that open-set identification aims
at finding the identity that best matches a probe face image if it indeed exists, while
the verification simply informs whether a pair of face images correspond to the same
individual or not.

The first difference is the feature extraction process itself: open-set face
identification method utilizes low-level features in addition to VGGFace CNN
descriptor, the only descriptor employed on the face verification task. The latter
focuses on exploiting similarities among pair of features vectors. Particularly, the face
verification algorithm addresses a new feature descriptor derived from the absolute
difference of the original feature vectors.

The most relevant distinction is on how feature descriptors are split for the
training stage, preceding the process of generating hashing functions. In the open-
set face identification algorithm, all samples of an individual are randomly marked as
either positive or negative in each hashing model. Therefore, if a subject s has all its
samples in the positive set of hashing model h, s cannot be assigned to the negative set
of same hashing model h. On the other hand, the generation of hashing functions in
the face verification algorithm concerns whether a random pair of images have identical
labels. Consequently, if disparity feature vectors are originated from genuine sample
pairs, they can only be allotted to multiple positive sets (regardless of the hashing
functions) or negative collections otherwise.

Finally, open-set face identification method designates probe samples as known
if they satisfy a certain threshold (described with details in Chapter 5.2.1), aiming at
selecting the best individuals to compose a list of candidates which will be delivered to
a closed-set identification method for each known probe sample. On the other hand,
the face verification method loops through all hashing models to find out whether
the number of positive responses surpasses the quantity of negative responses. Both
methods consist of embedding of classifiers. Also, they are an adaptation of Bootstrap
Aggregating [Breiman, 1996], which usually works well when small changes in a training
subset can cause large changes in a classifier. The proposed approach does not learn an
embedding containing heterogeneous machine learning models. More precisely, when
a list of classifiers C is generated, all its classifiers ci ∈ C share a homogeneous nature
in terms of learning methods since only one out of SVM, PLS and FCN is adopted
(uniform).
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(a) A disparity feature vector is computed for a pair of probe face images before projecting
onto all classifiers. In this exemplification, both probe images represent identity B.

(b) The disparity feature vector is presented to classifier c1 ∈ C in exchange for an arbitrary
negative response value r1 of −0.13. Negative responses indicate that probe samples are likely
to diverge.

(c) The disparity feature vector is presented to classifier c2 ∈ C in exchange for an arbitrary
positive response value r2 of +0.37. Positive responses indicate that the probe samples are
likely to be identical.

Figure 410: Testing (part I): The proposed feature extraction is employed on training
and testing stages. The probe disparity feature is compared to all classifiers and their
response values are stored for a posterior decision rule.
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(a) The disparity feature vector is now presented to classifier cm ∈ C in exchange for an
arbitrary positive response value rm of +0.45. Positive responses indicate that the probe
samples are likely to be identical.

(b) Each response value ri is sampled in order to obtain a corresponding discrete vector ~r.
The method then computes the ratio of the amount positive scores to the number of elements
in the response vector, that is, |~r|.

Figure 411: Testing (part II): The probe disparity feature is compared to all classifiers
(hashing functions) and their response values are stored for a voting decision rule. In
case of a positive ratio, both probe images are considered to share equivalent identities.
Otherwise, the probe samples are classified as not sharing the same identity since most
classification models vote for diverging identities.





Chapter 5

Experiments

This chapter presents the experimental evaluation of the approaches described
in Chapter 4. For the sake of keeping the explanation clear, the methods’ assessment
is depicted independently. Section 5.1 details the datasets and the feature descriptors
used for face identification and verification. Section 5.2 details the evaluation protocol
and the recognition evaluation for the open-set face identification task. Finally,
Section 5.3 describes the experiment protocol performed for face verification, as well
as the obtained results.

5.1 Common Attributes

For a clear reading and avoid going over repetitive sections, we group related
experimental information and present them in this section. Initially, there is the
summary of five datasets and two feature descriptors engaged in both developed
methods. We selected three of them as benchmarks for the open-set identification
method and the two remaining are reference datasets for the verification algorithm. The
datasets were released at different occasions and, consequently, they hold distinctive
attributes and so do the feature descriptors. Subsequently, we simultaneously expose
the experimental setup for open-set face identification and face verification seeing that
they share comparable parameters.

5.1.1 Datasets

In favor of demonstrating the effectiveness of our methods, we select datasets with
different characteristics, ranging from frontal cropped images taken under controlled
scenarios to images in the wild with lighting and pose variations.

43
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The algorithm proposed for open-set face identification is evaluated on a recent
non-constrained dataset and on two well-known datasets. We evaluate our open-set
identification method on the datasets FRGCv1, PubFig83 and VGGFace. For the sake
of demonstrating the capability of the proposed face verification approach, we chose two
challenging datasets with different aspects, such as age discrepancies and expression
diversities. We evaluate our verification method on the datasets LFW and on PubFig.

Face Recognition Grand Challenge v1.0 (FRGCv1): FRGCv1 [Phillips et al.,
2005] consists of more than five thousand images distributed to 152 subjects, six
different experiments and two facial expressions: smiling and neutral. The controlled
frontal face images were captured in a studio setting under two lighting conditions
whereas uncontrolled images were taken in changing illumination conditions on either
hallways or outside. We only evaluate the methods on three of them, experiment
one, two and four, since experiments three, five and six do not correspond to 2D
face recognition. Experiments one and two only contain controlled images whereas
experiment four considers a gallery with one controlled still picture for each subject
plus a probe set having multiple uncontrolled images.

Figure 51: Frontal face images extracted from Face Recognition Grand Challenge v1.0
dataset.

Labeled Faces in the Wild (LFW): LFW dataset [Huang and Learned-Miller, 2014;
Huang et al., 2007] can be considered the genuine state-of-the-art benchmark for face
verification. It also comprises face images aligned with an unsupervised deep feature
algorithm, commonly known as LFW-A or deep-funneled LFW [Huang et al., 2012a].
This dataset contains approximately 13, 000 uncontrolled face images of more than five
thousand individuals. In contrast to the majority of existing face datasets, these images
were taken in entirely unconstrained situations with non-cooperative individuals. Thus,
there is also large divergence in pose, lighting, expression, scene, and camera. For
fair comparison, the creators of LFW suggest reporting performance as a 10-fold
cross validation using splits they have randomly generated. As other works on face
verification, we used deep-funneled LFW face images (LFW-A).
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Figure 52: Uncontrolled face images extracted from Labeled Faces in the Wild dataset.

Public Figures (PubFig): PubFig [Kumar et al., 2009] is larger than the LFW in
terms of image samples, consisting of nearly 60, 000 images of 200 subjects gathered
from across the Internet. PubFig was released long ago and they do not distribute
image files due to copyright issues. Thus, only 26, 787 out of 58, 797 initially images
remain available as links to these files are gradually disappearing over time. The
database is considered as very difficult as it evidences vast diversity in pose, lighting,
facial expression, age, gender, and ethnicity. The PubFig dataset is divided into two
units, the evaluation set with 140 subjects, designed to evaluate methods, and the
development set with 60 individuals, which holds no overlap with the evaluation set.

Figure 53: Uncontrolled face images extracted from Public Figures dataset.

Public Figures 83 (PubFig83): PubFig83 [Pinto et al., 2011] is a fragment of the
original PubFig dataset. In fact, it incorporates the subjects from PubFig holding more
than 100 samples. Therefore, PubFig83 is composed of at least 100 samples for each
one of the 83 individuals, totaling a minimum of 8,300 image samples. It comprises
several uncontrolled images with pose and expression variations. The images were
captured in non-restrained situations with non-cooperative individuals.

Figure 54: Uncontrolled face images extracted from Public Figures 83 dataset.
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VGGFace Dataset (VGGFace): VGGFace [Parkhi et al., 2015] contains about 2.6
million samples of more than 2,600 celebrities and public figures collected from the web.
Its initial list of public figures was taken out of the Internet Movie Data Base (IMDB)
celebrity list. Due to its massive size and high training time, we arbitrary select a
portion of the original VGGFace containing a thousand subjects with 15 samples each.
The individuals are chosen according to alphabetical ordering of all subjects followed
by the selection of the first 1000 individuals. Samples are also sorted in ascending order
and the first fifteen available images for each subject are selected.

Figure 55: Uncontrolled face images extracted from VGGFace dataset.

5.1.2 Feature Descriptors

Two feature descriptors are utilized with the open-set identification method:
HOG and VGGFace. In the verification approach we employ the VGGFace descriptor
only. The former was designed for object detection whereas the latter is based on
convolutional neural networks for face detection and recognition.

Histogram of Oriented Gradients (HOG): HOG [Dalal and Triggs, 2005] generates
descriptors that comprise shape information in the form of histograms. Before feature
extraction, images are re-scaled to 128×144 pixels and each sample is decomposed into
a set of overlapping blocks which features are extracted from. Each block is 16 × 16

pixels, with an 8-pixel stride and an 8× 8-pixel cell size. After extracting features for
all blocks, descriptors are concatenated in a feature vector and that turns into a feature
descriptor.

VGGFace CNN descriptor (VGGFace): VGGFace is computed using the
implementation of Parkhi et al. [2015], which is derived from the VGG-Very-Deep-
16 CNN architecture [Simonyan and Zisserman, 2015], an artificial neural network
that comprises a long sequence of convolutional layers. VGGFace is a stack of 3 × 3-
convolutional filters followed by three fully-connected and a soft-max layer. All hidden
layers are equipped with the rectification non-linearity (ReLU). We do not employ
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any sort of fine tuning towards the datasets mentioned in Section 5.1.1. Instead, we
consider the network already learned using the standard training weights generated by
Parkhi et al. [2015].

5.1.3 Experimental Setup

We explore the Scikit-Learn library for Python, a simple and efficient open-source
tool for data analysis and mining that provides fundamental versions of PLS and
SVM. TensorFlow is the adopted neural network library for our open-set ANN-based
algorithm version, high-leveled with Keras API for a fast experimentation.

All identification and verification experiments are performed on a Intel Xeon
E5-2630 CPU with 2.30 GHz and 16GB of RAM using Ubuntu 14.04 LTS operating
system, no more than 12 GB of RAM was required though. Both identification and
verification methods have mainly three parameters: the number of binary classification
models (hm), the number of subjects in each model’s positive or negative class (hs),
the number of PLS dimensions in the latent space (d) or the SVM trade-off (c) between
training data errors and margin maximization.

Some experiments portray parameter observations varying hm from 10 to 500 in
arbitrary steps. No more hashing models are created because the analysis focuses on
the combination of accuracy with fast training/testing rather and including thousands
of hashing models since it significantly increases computational time. In the face
identification approach, hs is proportional to the percentage of known individuals in
the known set, which is demonstrated on Table 55. For face verification, hs indicates
the number of relational disparity features vectors in each model’s positive or negative
class, which was implicitly provided by LFW’s protocols. SVM parameter c is set
to 1 as it returned best results during tuning stage. Moreover, we also ranged PLS
parameter d from 4 to 30 in a 2-step increase to conclude that it had little impact on
our algorithm’s performance; therefore, we set d to 10.

5.2 Open-set Face Identification

In this section we assess the method proposed in Chapter 4.1, which resembles
the combination of Locality-Sensitive Hashing (LSH) with Support Vector Machines
(SVM), Partial Least Squares (PLS) and Artificial Neural Networks (ANN). The open-
set face identification framework and experimental data are available online1.

1https://github.com/rafaelvareto/HPLS-HFCN-openset
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5.2.1 Evaluation Protocol

There is not a worldwide consensus when it comes to protocols for open-set face
recognition. In this work, we propose a new protocol for both FRGCv1 and VGGFace
datasets in addition to adopting an already-explored protocol for PubFig83.

Literature Protocol: We evaluate PubFig83 alone on a protocol exploited by some
researchers [Carlos et al., 2013; Pinto et al., 2011; Santos Junior and Schwartz, 2014].
According to this convention, since PubFig83 holds at least 100 samples for each one
of its 83 individuals, eight subjects are randomly selected to compose the unknown
test set. Consequently, we consider the remaining 75 subjects of the original dataset
as the known set (known set = 90%, unknown set = 10%). For the training stage, 90
samples are randomly selected from every subject in the known set to build the gallery
set and the remaining ten samples form the test set (training set = 90% of the known
set). This protocol is applied to experiments depicted in Table 51 and Table 54.

Proposed Protocol: We propose a new protocol for the experiments carried out
with FRGCv1 and the subset of VGGFace. We partition the entire dataset, varying
the known individuals set size in 10%, 50% and 90% of the complete face database. All
remaining individuals become unseen classes during training time. For each subject in
the known set, 50% of the samples are randomly selected for training and the remaining
is left for testing. This protocol is applied to experiments exposed on Table 52 and
Table 55.

Evaluation Metric: We consider both extensively employed Receiver Operating
Characteristic (ROC) curves and its Area Under Curve (AUC) for all datasets. ROC
curves usually present true positive rate on the Y axis, and false positive rate on the
X axis. It indicates that the plot’s top left corner is the optimal point. Good open-set
recognition systems would present true positive rates for the ROC curve equal to one.
Similarly, AUC ranges from zero to one, being preferable values approaching one.

For a more accurate evaluation of retrieval-based open-set biometric systems,
we take into account the Detection and Identification Rate (DIR) and False Alarm
Rate (FAR) as well. DIR is a probability estimate that a subject enrolled in the
gallery is detected whereas FAR estimates the likelihood a non-enrolled individual is
characterized as belonging to the gallery set. Plotting DIR vs. FAR produces a chart
known as Open-set ROC, a metric generally used to evaluate approaches composed by
filtering and identification steps.
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Threshold Selection: An evaluation of three different thresholds is executed in the
interest of finding out the one that best impacts our algorithms. Figure 56 shows the
ROC curve for each threshold τ , which are detailed below:

τ1 =
HTS1

AV G(HTS2 +HTS3)
(5.1)

τ2 =
HTS1

HTS2

(5.2)

τ3 =
HTS1

AV G(HTS2 + ...+HTSp)
, p = d0.15× |H|e (5.3)
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Figure 56: Average ROC curves for the FRGCv1 dataset on experiment one. We
repeated this experiment five times, fixing variable p to 15% of all subjects in the
gallery set.

Basically, they are based on the ratio of the vote-list histogram H’s top scorer
TS1 to the average of the succeeding subjects. The chart indicates that the ratio among
only the leading three top scores does not drastically interfere in the area under the
curve. Better results attained with τ1 and τ2, demonstrating that the addition of many
bins to the threshold calculation (τ3) worsens the algorithm decision performance.
We believe that when more individuals are considered in the threshold, it becomes
less discriminative as most of the bins consist of low values, then the denominator is
predisposed to hold small numbers due to the average of the 15% most relevant persons.
To the remainder of the open-set identification experiments, we opt for threshold τ1.
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5.2.2 Method Evaluation

We evaluate the open-set identification approach described in Chapter 4.1 for
VGGFace, PubFig83 and experiment number four of FRGCv1 dataset. From now on,
we refer to the combination of locality-sensitive hashing and support vector machine as
Hsvm. Equivalently, Hpls turns into the association of hashing methods with partial
least squares, and Hann represents the embedding of artificial neural networks.

5.2.2.1 Descriptor Selection

In consonance with Section 5.1.2, there are two feature descriptors used in
this approach: HOG and VGGFace. Table 51 presents a comparison between both
descriptors on PubFig83 dataset. The considered approaches are Hsvm, Hpls and
Hann, which respectively stands for the proposed approaches alternating the classifier
in SVM, PLS and ANN.

Table 51: Comparison between HOG and VGGFace descriptors on PubFig83 with
Hsvm, Hpls and Hann algorithms. It presents ROC’s area under curve (AUC),
standard deviation (STD) as well as the number of executions (Execs) for experiments
with one hundred binary classification models (hm = 100).

Approach AUC STD Execs

P
ub

F
ig
83

Hsvm-HOG 0.510 0.011 10
Hsvm-VGG 0.940 0.010 10
Hpls-HOG 0.658 0.014 10
Hpls-VGG 0.940 0.020 10
Hann-HOG 0.640 0.021 10
Hann-VGG 0.973 0.004 10

As we can see in Table 51, the approaches using VGGFace CNN descriptor notably
outperform HOG-based algorithms following the Literature Protocol. While HOG only
holds shape information, VGGFace CNN descriptor comprises much more information
related to faces since its network was previously trained on an unrestrained face dataset.

PubFig83 was chosen for the fact that it has no room for data influence, resulting
then in a proper contrast, which would not be possible with FRGCv1 or VGGFace.
HOG would be indicated for controlled frontal face datasets, like FRGCv1, due to
its characteristic of encountering gradient orientations. VGGFace CNN descriptor
is a network trained with VGGFace dataset. Therefore, for an unbiased HOG
and VGGFace descriptor evaluation, FRGCv1 and VGGFace datasets would not be
recommended.
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5.2.2.2 Baseline: One-Class SVM

One-class SVM [Schölkopf et al., 2001] generates a spherical boundary around the
data in the feature space. The idea is to add most data into the hyper-sphere so that it
becomes an optimization problem. In our experiments, we execute the extended one-
class Wsvm algorithm proposed by Scheirer et al. [2014], which is publicly available
in the form of a library called LibSVM2. The SVM learning code from LibSVM is the
ground of other open source machine learning toolkits like Scikit-Learn library.

There are two key parameters we should concern when using one-class SVM: γ,
which defines the shape of the hyper-sphere that represents the SVM kernel, and ν,
which is the upper bound on the amount of training errors and a lower bound of the
quantity of support vectors. The best results were obtained with γ’s default value
(γ = 1/n, where n is the length of the feature vectors. With respect to ν, we perform a
grid search in pursuance of the value that provides the best AUC for each experiment’s
protocol.

5.2.2.3 Literature Comparison

The performance assessment of the feature descriptors HOG and VGGFace is
carried out independently. Santos Junior and Schwartz [2014] combine four descriptors:
HOG, LBP, mean color and Gabor filters. Wsvm symbolizes the one-class SVM of
Scheirer et al. [2014]. We fix both the number of hashing models to 100 and the
quantity of individuals in the known set to 50%, in accordance to the Proposed Protocol
specified in Section 5.2.1.

We present the proposed face identification results in Table 52 in the form
of Hann, Hpls and Hsvm for artificial neural networks, partial least squares and
support vector machines, respectively. Our method achieves very good results using
two different feature descriptors: HOG and VGGFace. Table 52 shows experiments on
the FRGCv1 dataset. There are blank cells in the first three rows because we did not
reproduce the experiments implemented by Santos Junior and Schwartz [2014].

Histogram of Oriented Gradients is considered a low-level feature descriptor;
however, it performed well with Hpls. We believe it can be explained by HOG’s
structure and FRGCv1’s predominant characteristics since it encompasses high-
resolution images acquired under partial controlled conditions and no pose variation.
VGGFace was learnt considering more than two thousand unique individuals with
all sorts of pose variations and expression changes. Therefrom, HOG outperforming
VGGFace seems plausible for a dataset like FRGC.

2https://github.com/ljain2/libsvm-openset
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Table 52: Average area under curve (AUC), standard deviation (STD) and number
of executions (Execs) for the experiment four of FRGCv1 dataset. We employ the
Proposed Protocol with 100 hashing models, selecting 50% of the subjects to compose
the known set (training and known test set).

Approach AUC STD Execs
Least Squares [Santos Junior and Schwartz, 2014] 0.869 - -

F
R
G
C
v1

E
xp

er
im

en
t
4 SVM-Single [Santos Junior and Schwartz, 2014] 0.853 - -

Chebyshev [Santos Junior and Schwartz, 2014] 0.838 - -
Wsvm-VGG [Scheirer et al., 2014] 0.862 0.014 10
Wsvm-HOG [Scheirer et al., 2014] 0.515 0.027 10

Hsvm-VGG 0.871 0.016 10
Hsvm-HOG 0.902 0.015 10
Hpls-VGG 0.863 0.020 10
Hpls-HOG 0.910 0.022 10
Hann-VGG 0.867 0.026 10
Hann-HOG 0.613 0.105 10

5.2.2.4 Identification Evaluation

On the contrary of the previous experiments that only notify whether individuals
are known, this section focuses on assessing the complete identification pipeline. That
is, we return the identity that best matches the probe sample when the algorithm
considers that the subject is enrolled in the gallery set. We couple the algorithm
proposed in Chapter 4.1 with another PLS for regression so that a single model can be
learnt for each subject following a one-against-all classification scheme implemented in
the work of Schwartz et al. [2012].

In the One-Against-All Partial Least Squares (OAAPLS) approach, samples from
the subject are learnt with positive response equal to +1 and samples from other
subjects with negative response equal to −1. In other words, when the i-th individual
is considered, all other subject’s samples are used as counterexamples. In this case, the
PLS regression model is learnt considering feature descriptors extracted from samples
in the positive set with target values equal to +1 against samples in the negative set
with target values equal to −1.

In this experiment, we employ Hpls as the trigger to OAAPLS since it is only
executed when Hpls considers a subject as known. OAAPLS learns the same training
samples employed in Hpls. Therefore, we do not select the most similar individuals to
compose a list of candidates. During the testing stage, the probe sample is presented to
each OAAPLS model, obtaining the identity from the model that returns the highest
score.
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Figure 57: Open-set ROC curves for PubFig83 and FRGCv1 dataset on experiment
four achieved with the combination of VGGFace features, Hpls and OAAPLS.

Interpreting open-set ROC curves resembles the form we discern the typical ROC
curve. Therefore, the plot’s top left corner is the optimal point. Figure 57 demonstrates
that our method attained very good results for PubFig83. Even though FRGCv1
is composed of frontal faces, experiment four holds only one illumination-controlled
image sample per individual for training step, which tends to be insufficient for a
good representation. In this scenario, FRGCv1 turns out to be more challenging than
PubFig83 due to the fact the latter has several samples per subject.

5.2.2.5 Single Classifier Evaluation

For the purpose of analyzing each classifier’s behavior individually, experiments
considering SVM, PLS and ANN are performed on the FRGCv1 experiment four, which
considers a gallery with one controlled still picture for each subject plus a probe set
having multiple uncontrolled images.

The objective behind this experiment is not to determine whether a subject is
enrolled the gallery set. In fact, this experiment assesses how well a single classifier
correctly matches the class a probe sample belongs to. If a subject s is randomly
assigned to the positive collection, it is expected that the classifier outputs a positive
response. In the same manner, if s belongs to the single classifier’s negative collection,
the classifier must return a negative response.
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Table 53: Evaluation of SVM, PLS and ANN classifiers individually with features
extracted using VGGFace. The presented results are: average hit rate (AVG), standard
deviation (STD), minimum (MIN) and maximum (MAX). They are computed on 100-
execution hit rates.

F
R
G
C
v1

Values SVM (%) PLS (%) ANN (%)
AVG 71.379 73.559 77.026
STD 02.382 01.943 01.648
MIN 66.419 70.614 73.245
MAX 76.217 77.631 80.592

Hit rate is a synonym for recall and measures the proportion of positives that are
correctly identified. Table 53 presents the hit rate for 100 executions. Results show
that a ANN classifier alone provides better results than a PLS or SVM model. While
a PLS model achieves a hit rate of approximately 73.56%, the SVM classifier attains
71.38% and the ANN-based classifier attains 77.03%. All methods hold tight standard
deviation values and the variation between their minimum and maximum values remain
close to the average.

5.2.2.6 Parameter Evaluation

To check how the three identification method versions respond to some parameter
adjustments, we analyze the behavior of the approaches by varying the number of
hashing models on the PubFig83 dataset as we adhere to the Literature Protocol
and alternating the known individuals’ set size for both VGGFace and FRGCv1 in
accordance with the Proposed Protocol. Progressively adding hashing models results in
extra random partitions, more models training and further probe feature projections at
testing time. Initially, small number of classifiers does not seem adequate for discerning
when an individual is registered in the gallery set. Table 54 and Table 55 expose how
these parameters affect the implemented methods.

Table 54 shows great improvement in the initial classifier augmentation when
varying from 10 to 50 binary classifiers. No significant accuracy improvement is noticed
when more than 100 classifiers are established. The little increase in AUC for PubFig83
with increasingly hashing models may be justified by the fact that algorithms trained
with multiple-sample gallery sets – for this experiment, PubFig83 holds around 90

samples per class and only 83 classes – are inclined to remain stable regardless of the
number of hashing functions. If we reduce the number of samples per subject available
at training time and increase the number of subjects enrolled in the gallery of known
individuals, chances are more hashing models are required to keep AUC high.
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Table 54: Variable number of hashing models: area under curve (AUC) and standard
deviation (STD) for PubFig83, considering 75 randomly chosen subjects out of 83 in
the known set and the eight left individuals compose the unknown test set in each of
the 10 executions.

Number of models 10 20 30 50 100 300 500

P
ub

F
ig
83

Hsvm-VGG AUC 0.683 0.816 0.881 0.908 0.940 0.966 0.972
STD 0.028 0.019 0.018 0.013 0.010 0.007 0.005

Hpls-VGG AUC 0.743 0.866 0.885 0.932 0.940 0.960 0.968
STD 0.030 0.024 0.029 0.021 0.020 0.006 0.004

Hann-VGG AUC 0.385 0.792 0.921 0.959 0.973 0.977 0.981
STD 0.059 0.050 0.016 0.009 0.004 0.003 0.003

Table 55: Variable known individuals: area under curve (AUC) and standard deviation
(STD) for FRGCv1 experiment four and VGGFace dataset. We secure 100 hashing
models for Hsvm, Hpls and Hann with VGGFace descriptor as we execute each
algorithm 10 times.

Known individuals 10% 50% 90%

Hann-VGG
AUC 0.900 0.867 0.868

F
R
G
C
v1

4

STD 0.045 0.026 0.014

Hpls-VGG
AUC 0.848 0.863 0.839
STD 0.059 0.020 0.024

Hsvm-VGG
AUC 0.877 0.871 0.869
STD 0.021 0.016 0.011

Wsvm-VGG AUC 0.866 0.862 0.848
Scheirer et al. [2014] STD 0.035 0.015 0.019

Hann-VGG
AUC 0.987 0.976 0.965

V
G
G
Fa

ce

STD 0.003 0.004 0.006

Hpls-VGG
AUC 0.978 0.961 0.926
STD 0.005 0.003 0.005

Hsvm-VGG
AUC 0.967 0.943 0.725
STD 0.014 0.006 0.004

Wsvm-VGG AUC 0.841 0.839 0.835
Scheirer et al. [2014] STD 0.013 0.007 0.007

In general, the accuracy of a recognition system tends to reduce as we have
more individuals enrolled in the gallery set. Besides, as this number increases, the
computational cost usually skyrockets. Surprisingly, in Table 55, our open-set methods
efficiency does not deteriorate with the enrollment of new subjects on the FRGCv1
dataset since having more samples increase the discriminability of classifiers when there
are only few image faces per subject. FRGCv1 contains less than two hundred subjects
and, as a result, raising the number of individuals in the known set from 10 to 90%

does not severely affect the methods’ accuracy.
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According to Table 55 we believe that the stable behavior observed on Hann

and Hpls approaches on both datasets lies on their capability of remaining robust
despite of parameter adaptation and dataset selection. VGGFace Dataset offers more
challenging experiments as it has a lot more than 200 individuals, in fact, it is composed
of one thousand subjects. As a consequence, there was a sudden accuracy drop running
Hsvm on VGGFace as the 100-model SVM embedding could not separate the training
data linearly when assigning 90% of all VGGFace datasets as the known set.

5.2.2.7 Complete Evaluation

In order to provide a complete experimentation overview, the following tables
contain the results obtained on three datasets involving the extraction of deep features.

Table 56: Complete battery of experiments on FRGCv1 dataset following the Proposed
Protocol : number of hashing models (#Models), average area under the curve (AUC),
standard deviation (STD), number of subjects selected to composed the known set
(KS) and the percentage of samples from each subject in the known set that should be
user for training (TS).

Face Recognition Grand Challenge v1.0: Experiment 4
# Hpls Hsvm Hann

Models AVG STD AVG STD AVG STD KS TS
10 0.694 0.064 0.717 0.011 0.634 0.093 15/152

subjects

50%
sam

ples

20 0.778 0.041 0.786 0.057 0.734 0.105
30 0.765 0.057 0.826 0.032 0.819 0.071
50 0.826 0.037 0.861 0.020 0.876 0.025
100 0.848 0.059 0.877 0.021 0.900 0.045
300 0.826 0.045 0.888 0.048 0.886 0.047
500 0.842 0.039 0.900 0.037 0.904 0.039
10 0.698 0.029 0.666 0.029 0.418 0.071 76/152

subjects

50%
sam

ples

20 0.786 0.018 0.784 0.019 0.727 0.027
30 0.809 0.028 0.819 0.018 0.819 0.019
50 0.823 0.019 0.837 0.021 0.848 0.013
100 0.863 0.020 0.871 0.016 0.867 0.026
300 0.870 0.016 0.898 0.015 0.888 0.024
500 0.879 0.018 0.898 0.009 0.896 0.019
10 0.616 0.034 0.640 0.025 0.383 0.032 136/152

subjects

50%
sam

ples

20 0.758 0.023 0.774 0.022 0.703 0.040
30 0.801 0.019 0.792 0.019 0.775 0.020
50 0.813 0.026 0.847 0.018 0.836 0.023
100 0.839 0.024 0.869 0.011 0.868 0.014
300 0.862 0.022 0.895 0.011 0.878 0.015
500 0.844 0.012 0.890 0.009 0.890 0.019
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Tables 56, 57 and 58 provide a complete battery of experiments on different
datasets adopting the VGGFace CNN feature descriptor. In these experiments, we
vary both the number of hashing models from 10 to 500 and the number of subjects in
the known set, which may range in terms of 10, 50 and 90% of all individuals from the
dataset depending on the protocol. For each subject randomly allotted in the known
set, a percentage of his/her face samples are used for training and the remaining samples
comprise the known probe sample set. Individuals that are not selected to form the
known set end up constituting the unknown probe set.

Table 57: Complete battery of experiments on VGGFace dataset subset following the
Proposed Protocol : number of hashing models (#Models), average area under the curve
(AUC), standard deviation (STD), number of subjects selected to composed the known
set (KS) and the percentage of samples from each subject in the known set that should
be user for training (TS).

VGGFace Dataset Subset: 1000 Subjects
# Hpls Hsvm Hann

Models AVG STD AVG STD AVG STD KS TS
10 0.775 0.015 0.712 0.032 0.322 0.037 100/1000

subjects

50%
sam

ples

20 0.915 0.016 0.897 0.014 0.795 0.064
30 0.939 0.008 0.933 0.011 0.939 0.013
50 0.960 0.007 0.943 0.028 0.976 0.005
100 0.978 0.005 0.967 0.014 0.987 0.003
300 0.988 0.003 0.982 0.013 0.992 0.004
500 0.988 0.002 0.979 0.015 0.992 0.003
10 0.558 0.009 0.540 0.006 0.223 0.061 500/1000

subjects

50%
sam

ples

20 0.794 0.004 0.663 0.006 0.624 0.035
30 0.875 0.004 0.776 0.008 0.872 0.012
50 0.929 0.005 0.874 0.007 0.949 0.007
100 0.961 0.003 0.943 0.006 0.976 0.004
300 0.977 0.002 0.972 0.003 0.987 0.002
500 0.976 0.001 0.977 0.004 0.987 0.001
10 0.504 0.014 0.504 0.012 0.244 0.022 900/1000

subjects

50%
sam

ples

20 0.662 0.011 0.516 0.012 0.530 0.030
30 0.758 0.006 0.529 0.010 0.788 0.030
50 0.854 0.010 0.599 0.007 0.928 0.005
100 0.926 0.005 0.725 0.004 0.965 0.006
300 0.959 0.005 0.895 0.006 0.984 0.002
500 0.965 0.003 0.925 0.004 0.984 0.001

Remember that for the Proposed Protocol the known individuals set size vary
progressively. Regardless of the known set size, half the samples of each subject in
the known set builds the gallery set and the other half makes the known probe set.
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Contrarily, the Literature Protocol establishes that 90% of the individuals are assigned
to the known and 90% of these subjects’ face samples must be used for training.
Table 58 goes beyond the employed protocol and also reveals how the embedding of
classifiers perform on PubFig83 dataset with a variable known set size.

Table 58: Complete battery of experiments on PubFig83 dataset partially following
the Literature Protocol : number of hashing models (#Models), average area under the
curve (AUC), standard deviation (STD), number of subjects selected to composed the
known set (KS) and the percentage of samples from each subject in the known set that
should be user for training (TS).

Public Figures 83: 83 Subjects
# Hpls Hsvm Hann

Models AVG STD AVG STD AVG STD KS TS
10 0.762 0.048 0.728 0.037 0.688 0.057 8/83

subjects

90%
sam

ples

20 0.741 0.059 0.778 0.034 0.86 0.05
30 0.826 0.051 0.783 0.046 0.915 0.020
50 0.855 0.060 0.820 0.047 0.945 0.014
100 0.882 0.040 0.839 0.045 0.962 0.012
300 0.899 0.033 0.807 0.034 0.969 0.010
500 0.919 0.017 0.775 0.039 0.975 0.014
10 0.803 0.023 0.765 0.026 0.464 0.076 41/83

subjects

90%
sam

ples

20 0.875 0.027 0.868 0.015 0.804 0.047
30 0.910 0.014 0.890 0.018 0.927 0.017
50 0.935 0.015 0.932 0.011 0.966 0.008
100 0.957 0.006 0.951 0.014 0.973 0.006
300 0.970 0.005 0.973 0.006 0.983 0.004
500 0.976 0.003 0.979 0.002 0.981 0.003
10 0.743 0.030 0.683 0.028 0.385 0.059 75/83

subjects

90%
sam

ples

20 0.866 0.024 0.816 0.019 0.792 0.050
30 0.885 0.029 0.881 0.018 0.921 0.016
50 0.932 0.021 0.908 0.013 0.959 0.009
100 0.940 0.020 0.940 0.010 0.973 0.004
300 0.960 0.006 0.966 0.007 0.977 0.003
500 0.968 0.004 0.972 0.005 0.981 0.003

Although speed and low computational cost are largely desired, it was obtained
as a consequence of handling collections of binary classifiers for a different purpose:
discriminating known from unknown samples in regard to a gallery of registered
individuals. Low computational cost and speed comes from the fact that the
employment of simple binary classifiers as hashing functions provide compelling
improvement over the brute-force approach, a process in which all subjects from the
gallery are compared.
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5.3 Face Verification

In this section, we evaluate our approach for face verification. The proposed
method generates an embedding of binary Partial Least Squares (PLS) or Support
Vector Machine (SVM) models coupled with majority voting to determine whether two
faces belong to the same person. The face verification framework and experimental data
are available online3. Note that the embedding of binary partial least squares classifiers
or support vector machines for face verification are denoted on the experiments as
HplsV and HsvmV, precisely.

5.3.1 Evaluation Protocol

In addition to ROC curves and AUC metric, described in Section 5.2.1, we
measure the effectiveness of our approach considering Equal Error Rate (EER), a
measure usually employed on face verification and biometrics in general that indicates
the value where the fraction of genuine samples classified as impostor (false rejection
rate, FRR) is equal to fraction of impostor samples classified as genuine (false
acceptance rate, FAR). The lower the equal error rate, the higher the accuracy of
the biometric system.

For the evaluation performed on the LFW dataset, we use the protocol
unrestricted, labeled outside data for all experiments. We show the ROC curve, its AUC
and the standard deviation error (STD) on the deep-funneled LFW. The unrestricted
protocol allows researchers to exploit identities in the training set so that it is possible
to generate more training pairs and add them to the training stage. For the PubFig,
we present the EER and the standard deviation.

Differently from many approaches that achieve state-of-the-art results following
LFW’s unrestricted, labeled outside data protocol, we neither focus on grouping
millions of images in the interest of learning discriminative face representations using
convolutional neural networks [Ding and Tao, 2015; Masi et al., 2016; Schroff et al.,
2015; Taigman et al., 2014] nor make use of additional face datasets to train same/not-
same classifiers [Ding and Tao, 2015; Taigman et al., 2014]. These authors claim that
employing either LFW-A or PubFig to produce more training pairs substantially over-
fits the training data due to their redundant characteristics. On contrary, we carry
out a minimal training, working with pairs of images recommended by the dataset.
The only outside data we use are the samples required in the learning process of the
VGGFace CNN descriptor [Parkhi et al., 2015].

3https://github.com/rafaelvareto/HPLS-verification
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5.3.2 Method Evaluation

The algorithm proposed in Section 4.2 is evaluated with LFW-A and PubFig
datasets following the unrestricted, labeled outside data protocol. Our experiments are
grouped in two categories: same-dataset evaluation and cross-dataset evaluation. In
the same-dataset evaluation, we follow the LFW and PubFig splits strictly with no
use of additional labeled training examples to increase the amount of data available
when learning the classification models, as we understand that outside datasets only
for the purposes of extracting features is significantly different than using outside data
to train classifiers. In the cross-dataset evaluation, we train the classifiers using PubFig
development set and evaluate the performance on LFW splits for cross validation. We
use the PubFig development set because it is entirely disjoint of LFW identities and
PubFig evaluation set individuals.
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Figure 58: Average ROC curves for the LFW-A dataset and its respective area under
the curve (AUC). Some curves represent experiments conducted with deep funneled
face images. We repeat our experiments ten times for each setting. The plot considers
the following methods: DeepFace [Taigman et al., 2014], MMDFR [Ding and Tao,
2015], Pose+Shape+Exp [Masi et al., 2016] and a commercial recognition system called
SkyTop.

Table 59 shows the results on PubFig whereas Figure 58 shows the experiments
on the LFW-A dataset. In these datasets, the cross-validation evaluation is adopted
among the available folds, and we report the averaged results. Our approach was
evaluated for different settings, described as follows.
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• Cross: it categorizes a cross-dataset verification, in which the training stage
uses images from PubFig development set and LFW folds are used during the
testing stage. PubFig development set does not have a list of same/not-same
training pairs. Therefore, training tuples were symmetrically sampled in a
random manner.

• Dev-Eval: it is analogous to the cross-dataset experiment, but it comprises
PubFig development set in the training stage and its evaluation set for testing.
Thus, it does not constitute a cross-dataset experiment.

• One-F-M: the number of PLS models is associated with the number of folds
in the cross validations scheme – one fold per PLS binary model. Particularly,
in each iteration we pick a fold to test and each one of the remaining folds
comprises a PLS model. Since the datasets have ten folds, we only generate nine
PLS classification models.

• Random: it randomly allocates same/not-same training pairs into each PLS
binary model as explained in Section 4.2.2, ensuring that all training pairs are
evenly distributed among all models.

Table 59: Average equal error rate (EER) and standard deviation (STD) for the
PubFig dataset. Top rows indicate approaches with state-of-the-art performance, our
performance is shown in mid rows and bottom rows present other relevant methods.

Approaches EER (%) STD
DRM-WV [Hayat et al., 2015] 02.80 0.57

RNP [Yang et al., 2013] 10.79 0.83

P
ub

F
ig

D
at
as
et Dev-Eval 13.65 2.11

HplsV Random 14.73 2.02
One-F-M 16.63 3.05
Dev-Eval 13.89 1.97

HsvmV Random 14.64 2.08
One-F-M 15.95 2.56

CHISD [Cevikalp and Triggs, 2010] 19.15 0.71
GEDA [Harandi et al., 2011] 23.90 1.29

We observe that running the verification algorithm ten times for every setting,
except for One-F-M once it is deterministic, provides fair stability and small standard
deviation error. The results presented on Table 59 and on Figure 58 show that the
method achieves comparable performance on both benchmarks making use of much less
required data during the training stage and applying no data pre-processing algorithm.



62 Chapter 5. Experiments

5.3.2.1 Parameter Evaluation

We can note that the approach achieves good results even fixing the number
of disparity features in every classification model to 100 samples in each positive and
negative collection. To check how the method responds to some parameter adjustments,
we analyze its accuracy behavior by varying the number of PLS and SVM-based binary
classification models for both LFW-A and PubFig datasets under the Random, Dev-
Eval and Cross settings as previously described in Section 5.3.2. Average results are
gathered in Table 510 in virtue of they point up how the quantity of hashing models
affects the proposed methods.

Table 510: Evaluation of our method’s performance (AUC) and standard deviation
(STD) on LFW-A and PubFig datasets having an increasingly number of PLS and
SVM classification models with disparity samples fixed to 100.

Number of Models 10 30 50 100 300 500

Cross-LFW-A AUC 0.817 0.856 0.867 0.890 0.906 0.908

H
pl

sV

STD 0.014 0.017 0.016 0.017 0.017 0.014

Dev-Eval-PubFig AUC 0.926 0.938 0.938 0.940 0.942 0.942
STD 0.014 0.014 0.014 0.014 0.012 0.012

Random-LFW-A AUC 0.942 0.953 0.953 0.954 0.966 0.966
STD 0.012 0.012 0.012 0.012 0.011 0.011

Random-PubFig AUC 0.924 0.935 0.936 0.936 0.936 0.937
STD 0.015 0.014 0.014 0.014 0.014 0.012

Cross-LFW-A AUC 0.920 0.920 0.921 0.921 0.921 0.922

H
sv

m
V

STD 0.014 0.014 0.014 0.014 0.014 0.014

Dev-Eval-PubFig AUC 0.932 0.936 0.936 0.936 0.937 0.937
STD 0.016 0.014 0.014 0.014 0.012 0.014

Random-LFW-A AUC 0.952 0.955 0.955 0.956 0.956 0.956
STD 0.009 0.010 0.009 0.010 0.010 0.010

Random-PubFig AUC 0.931 0.934 0.936 0.936 0.936 0.936
STD 0.015 0.014 0.012 0.012 0.012 0.012

According to the results presented in Table 510, there is a constant improvement
when the number of binary classification models is increased from 10 to 50, specially for
the PLS-based approach, indicating the need for multiple hashing models. However,
there is no large AUC improvement for both datasets when the number of models
increases from 100 to 500. It may be justified by the fact that algorithms trained
with few-sample or few-subject gallery sets – LFW and PubFig, respectively – are
inclined to remain invariable because most PLS models may be very similar to one
another. Then, adding more binary models only increases computational time without
significant result improvement.
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The cross-dataset setting can also be analyzed according to Table 510. We can
see a slightly inferiority since training data (i.e., PubFig development set) are not
aligned and the testing dataset images (i.e., LFW-A), are aligned. Such alignment is
intended to lessen undesired pose variations as actual systems can rarely count on the
cooperation of people being framed in order to assist the recognition process.

Table 511: Evaluation of our method’s performance (AUC) and standard deviation
(STD) on LFW-A and PubFig datasets having an increasingly number of relational
disparity features and number of binary hashing models fixed to 100.

Number of Samples 50 100 300 500

Cross-LFW-A AUC 0.898 0.890 0.893 0.894

H
pl

sV

STD 0.016 0.017 0.016 0.015

Dev-Eval-PubFig AUC 0.935 0.940 0.945 0.951
STD 0.014 0.014 0.010 0.012

Random-LFW-A AUC 0.950 0.954 0.961 0.966
STD 0.012 0.012 0.007 0.008

Random-PubFig AUC 0.933 0.936 0.938 0.941
STD 0.016 0.014 0.015 0.014

Cross-LFW-A AUC 0.920 0.921 0.923 0.926

H
sv

m
V

STD 0.014 0.014 0.014 0.014

Dev-Eval-PubFig AUC 0.933 0.936 0.941 0.945
STD 0.016 0.014 0.016 0.010

Random-LFW-A AUC 0.951 0.956 0.963 0.967
STD 0.010 0.010 0.009 0.009

Random-PubFig AUC 0.930 0.936 0.939 0.940
STD 0.015 0.013 0.014 0.016

Average results in Table 511 indicate how influential the quantity of relational
disparity features for each binary hashing model is. The experiment comprises an
accuracy analysis with a progressive augmentation of disparity samples in PLS and
SVM classification models for both LFW-A and PubFig datasets under the Random,
Dev-Eval and Cross settings. Even though Tables 510 and 511 portray different
experiments, they have a comparable performance. For most experimental settings
in Table 511 there are stable enhancements when the number of disparity features
ranges from 50 to 500 samples. However, differently from generating more binary
classifiers, increasing the amount of relational disparity features does not seem to draw
the accuracy towards converging values. It probably happens because incrementing
the number of relational disparity features does not over-fit the classifier but, in fact,
augments its discriminating capability. Therefore, additional samples make classifiers
predict future observations more accurately.
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5.3.2.2 Time Consumption Evaluation

The execution time or CPU runtime of a specified task is commonly characterized
as the time spent by the system executing that task, including the time spent running
system services on its behalf. That is, the runtime comprises the moment the
Python script execution begins in conjunction with the program’s entry point and
the corresponding memory setup. On the contrary, the carried-out evaluation only
takes into account the time required for training and testing. It neither considers the
feature extraction process nor the setup time required to perform the learning and
predicting stages. We focus mainly on the machine learning runtime since it tends to
be the most time-demanding process in machine learning tools on the grounds that we
are not interested in computing the time taken by third-party modules.

Table 512: Evaluation of our method’s runtime (RUN), measured in seconds, and
standard deviation (STD) on LFW-A and PubFig having an increasingly number of
PLS and SVM classification models with subject samples fixed to 100.

Number of Models 10 30 50 100 300 500

Cross-LFW-A RUN 6.049 17.581 28.999 59.864 171.757 275.088

H
pl

sV

STD 0.088 0.171 0.244 2.281 1.707 5.920

Dev-Eval-PubFig RUN 4.726 13.593 22.477 44.541 148.622 235.986
STD 0.207 0.480 0.484 0.537 16.731 6.034

Random-LFW-A RUN 6.540 18.697 30.652 63.763 179.239 289.118
STD 0.116 0.247 0.340 1.863 1.650 6.608

Random-PubFig RUN 5.879 15.004 24.552 46.801 137.307 228.446
STD 0.397 0.383 0.443 0.264 1.332 1.634

Cross-LFW-A RUN 10.390 30.622 52.462 100.467 288.832 478.059

H
sv

m
V

STD 0.237 0.606 0.936 2.446 10.874 8.183

Dev-Eval-PubFig RUN 7.516 21.751 36.465 70.966 213.170 366.171
STD 0.170 0.327 0.432 0.510 2.103 14.694

Random-LFW-A RUN 10.387 29.954 49.917 97.678 289.168 464.783
STD 0.065 0.209 1.331 1.519 10.521 2.103

Random-PubFig RUN 9.207 23.396 36.668 71.379 208.221 345.276
STD 0.125 0.194 0.232 0.590 1.246 2.613

In this experiment we demonstrate how a similar parameter adaptation affects
the computational cost in terms of time. This analysis investigates which value for
the number of hashing models provides best trade-off between low execution time and
high area under the curve. According to Table 512 one can note there is a near-linear
runtime rise indicating that execution time grows accordingly to the number of binary
models in every step, which represents a constant scale factor commonly illustrated by
straight lines on a graph.
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Figure 59: A comparison between the area under the curve (AUC) and the
execution time (RUN). Straight lines represent the experiments comprising an accuracy
evaluation whereas dashed lines comprehend the average time taken. Each curve/line
involves the mean values of proposed approach on LFW-A and PubFig datasets.

Figure 59 contrasts the results demonstrated in Table 510 and 512. According to
the chart, there is a linear growth in the lines corresponding to the runtime evaluation.
Contrarily, the accuracy-related curves resemble a horizontal line, which denotes a
consistent performance that is not highly dependent on the number of binary classifiers.
It is not required to run the verification approach with either hundreds or thousands of
models to attain great results. Actually, with only a 100-model embedding, results are
comparable to executions with more classifiers. We conclude that it is only possible
for the reason that aggregating classifiers improves the stability and accuracy of the
employed machine learning algorithms, reducing variance and avoiding over-fitting.

Although the proposed approach has not outperformed state-of-the-art methods,
the experiments show that it attains favorable results. Furthermore, the approach
remains stable even under different domains with limited number of training samples.
The cross-dataset evaluation of PubFig development set and LFW folds demonstrates
that the method can consistently achieve promising results while maintaining
satisfactory generalization ability. Overall, this work confirms that there is no need of
large amount of data in pursuance of quality results on the chosen benchmarks. With
few thousands of face images, simple but robust algorithms can achieve very accurate
results.





Chapter 6

Conclusions

The use of embedding of classifiers has been widely used for fast image retrieval.
Throughout this work, two methods were proposed and analyzed in favor of answering a
single question: Can methods originally designed for fast image retrieval be successfully
applied to binary classification?

We were inspired by the potential of simple binary classifiers and how locality-
sensitive hashing splits the feature space. We decided to take advantage of their speed
and low computational cost to determine either if a probe face sample is known for the
open-set face identification task or if two face images represent the same person for the
face verification task. Experiments were carried out in a variety of datasets attained
satisfactory results. One of the main advantages of our two methods is their simplicity
and practical deployment since only two key parameters deeply influence performance:
the number of hashing functions and the number of subjects for each hashing model.

In this work, we did not concentrate on determining the correct identity of
an individual, but we actually focused on the classification problem only. Our
identification approach does not perform an incremental enrollment without retraining
all hashing models, which may be restrictive. In any case, the cross-dataset verification
evaluation showed that our method bears great generalization capability.

As future directions, a complete pipeline for open-set face identification,
considering the generation of a list of candidates as well as evaluating the identification
method on huge galleries is an applicable extension. For the face verification approach,
either other datasets could be incorporated in the training stage in pursuance of
better facial discrimination or fine-tune some of the last layers of the VGGFace CNN
descriptor.
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