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Abstract—Face recognition has been one of the most relevant
and explored fields of Biometrics. In real-world applications, face
recognition methods usually must deal with scenarios where not
all probe individuals were seen during the training phase (open-
set scenarios). Therefore, open-set face recognition is a subject
of increasing interest as it deals with identifying individuals in a
space where not all faces are known in advance. This is useful
in several applications, such as access authentication, on which
only a few individuals that have been previously enrolled in a
gallery are allowed. The present work introduces a novel approach
towards open-set face recognition focusing on small galleries and
in enrollment detection, not identity retrieval. A Siamese Network
architecture is proposed to learn a model to detect if a face probe
is enrolled in the gallery based on a verification-like approach.
Promising results were achieved for small galleries on experiments
carried out on Pubfig83, FRGCv1 and LFW datasets. State-of-
the-art methods like HFCN and HPLS were outperformed on
FRGCv1. Besides, a new evaluation protocol is introduced for
experiments in small galleries on LFW.

Keywords—open-set face recognition, siamese networks, face
recognition, small galleries.

I. INTRODUCTION

Face recognition is a real-world necessity, mainly for human
identification and surveillance. It presents many advantages
over other biometric methods such as fingerprint and iris
recognition, as face images capture is non-intrusive and can
be done at a distance [1]. Moreover the availability of face
samples on the Internet.

A common definition of face recognition assumes the ex-
istence of three tasks, as follows: verification, identification
and watch list recognition [2]. Face verification is defined as a
binary problem that consists of comparing two face images and
then determining if both of them belong to the same individual.
Closed-set face identification, or just identification, focus on
determining to which gallery member a face image sample
belongs. Watch list recognition (or open-set face recognition),
works similarly to the latter by also comparing the face sample
to the gallery, but with two major distinctions: i) the individual
may not belong to the gallery; ii) the face corresponding iden-
tity is only relevant if it was previously enrolled in the gallery.
More precisely, an open-set face recognition task addresses the
problem of determining whether a face image is enrolled in
a previously defined gallery and, in that case, retrieving the
sample’s corresponding enrolled identity.

Fig. 1: Representation of a Siamese Network. It has two input
images X1, X2 for each network (convolutional networks in this
example). The architecture (or function G) is the same for both
and the weights W are shared. The outputs are joined at the
end using Euclidean distance. The final output is EW . Source:
Chopra et al. [3].

Machine learning methods usually learn a model that uses
training data to map feature vectors to known classes [4],
[5]. Testing these methods consists in dealing with unknown
samples of known classes. However, dealing with unknown
classes on testing is not trivial. Open-set face recognition
methods have to deal with an “unlimited” number of unknown
classes (subjects’ identities) when compared to the countable
quantity of individual identities enrolled in the gallery set [6].

It is important to stress that this work aims to determine
whether a given face sample belongs to any individual reg-
istered in the gallery set, and not at retrieving its genuine
identity. In that direction, our proposal is directly comparable to
works in the literature [7]. Our main hypothesis is that Siamese
Neural Networks (SNNs) can be effectively employed in open-
set recognition. A SNN is composed of two independent sub-
networks with the same architecture and shared weights with
their outputs joined at the end using a distance metric [8].
Each independent sub-network has its own input, and the
whole network outputs a numeric distance value, indicating the978-1-7281-7539-3/20/$31.00 ©2020 IEEE



similarity between the two inputs. Although the SNN performs
face verification, the proposed architecture uses it to compute
scores and perform open-set recognition. Fig. 1 illustrates the
process.

Small galleries are the focus of the present work due to a
scalability limitation of the present method on the experiments
performed. To the best of our knowledge, this is the first time
that SNN are considered in open-set face recognition scenarios
focusing on small galleries. The term small gallery refers to sets
containing no more than 20 identities, but with no restrictions
on the number of samples per identity. Many business establish-
ments require visual authentication of small personnel, rarely
exceeding fifteen or twenty employees. The lack of sufficient
classes and samples turns the small gallery recognition task
into a difficult problem, especially due to overfitting. Similarly,
scarce face samples may reduce the models ability to learn
general facial characteristics.

The proposed method can be divided into two stages: first, an
SNN is trained on generated pairs of face samples that belong to
the gallery. It is trained for the usual task (verification): learning
to differentiate the members of the gallery. In the second stage,
the trained SNN is used to calculate the minimum Euclidean
distance between a probe image and training samples from all
members of the gallery. It is expected that the SNN learns a
representation afterward expressed in terms of distance of a
pair of images. These representations should allow establishing
a separation between the probe images that belong to the gallery
and the ones that do not.

Our main contribution is twofold. A new method using
SNN for performing open-set recognition on small galleries;
and a new experimental protocol for comparison of methods
devoted to open-set small galleries. The method addresses a
real necessity of algorithms that can perform well in constrained
data (few examples and few identities known) and the protocol
was defined to support the development of such methods.

Experiments performed on Experiment 4 of FRGCv1 dataset
(Experiment 4) [9] achieved state-of-the-art results for small
galleries in comparison with published work [7].

II. RELATED WORK

A face verification-like approach towards open-set recogni-
tion is proposed in the current work, using CNN and SNN. In
this respect, research regarding deep learning methods, open-
set recognition and Siamese Networks for face recognition are
reviewed.

One of the main focus of the face recognition research
community in the last years has been the improvement of the
feature extraction quality, which is measured by its ability to
represent and differentiate face samples. The most commonly
used methods are based on Convolutional Neural Networks
(CNNs).

However, CNNs only became the most used feature extrac-
tion and learning techniques within the last decade. Combined
with GPU and large datasets, face recognition methods are
capable of surpassing human performance using deep network

architectures, achieving state-of-the-art performance on many
surveillance and biometrics tasks [10]–[15].

One of the most well-established networks with a focus on
face recognition is the VGGFace [11], introduced in 2015. VG-
GFace is pre-trained on 2.6 million face images and achieves
98.95% accuracy on the Labeled Faces in the Wild (LFW)
dataset [16] under the face verification task. Conversely to most
works in the literature, we design an open-set face recognition
approach following a face-verification strategy.

According to Kemelmacher et al. [17], recent identifica-
tion and verification face recognition approaches are not very
promising when the gallery set is upscaled, that is, when the set
of known individuals escalates towards thousands or millions of
subjects. For that reason, scalability is drawing the attention of
several researchers [14], [18]–[20]. Vareto et al. [7] concentrate
on the open-set face recognition problem as they assess both
Partial Least Squares (PLS) and Multi-Layer Perceptron (MLP)
classification models in pursuance of an algorithm that is not
directly dependent on the gallery set size. In fact, the authors
build a collection of either PLS or MLP binary models, defined
as hashing functions, and a voting system scheme (candidate
list) to determine whether the queried subject is known or
unknown. If a subject stands out from the other individuals
of the candidate list, the subject is recognized; otherwise, the
subject is discarded since the method considers s/he is not
enrolled in the gallery set.

Siamese Networks are used for metric learning and were
originally developed for verifying signatures using Neural
Networks [8]. A few years later, they were employed in face
verification for the first time, using a new loss function based
on Energy-Based Models (EBM), called Contrastive Loss [3].
Since the boom of CNNs in face recognition, Siamese Networks
have been widely used for face verification in large datasets,
obtaining great performance over other methods [10], [11],
[21]. As Siamese Networks are a metric learning method, they
make use of similarity scores to perform recognition. Several
works have also proposed approaches based on thresholding
similarity-like scores, but focusing generally on open-set face
recognition [13], [14], [20], [22]–[26].

III. PROPOSED METHOD

The proposed method consists of 4 steps: i) face alignment;
ii) feature extraction; iii) training on pairs; iv) recognition. The
two first steps are straightforward approaches. On the third step,
negative and positive pairs are generated from the face gallery
samples to train the SNN to learn how to differentiate between
the gallery members. Using the trained SNN, in the last step, a
test sample is compared to selected training samples from each
gallery member and the recognition is performed based on the
similarity score. Each stage is detailed in the next sections and
illustrated in Fig. 2.

A. Face Alignment

Alignment is conducted in all face images using Joint
Face Detection and Alignment using Multi-task Cascaded
CNNs [27]. The Multi-task Cascaded CNN can perform both



Fig. 2: Pipeline for proposed method. The gallery is used for training the Siamese Networks, after face alignment/crop and
feature extraction. At the end, a threshold is defined. The test face images are aligned/crop and their features are extracted to
perform recognition. The recognition stage assigns a binary label to each test sample: “Known” or “Unknown”.

face detection and alignment at the same time. There are three
stages to perform both tasks:

i. a shallow CNN produces a large set of windows in the
image that might be a face or not;

ii. a more complex CNN reject most of the windows, which
are unlikely to contain faces;

iii. an even more complex CNN analyzes the results refining
it and outputs landmarks positions for aligned faces.

This state-of-the-art method was used in the pre-processing
stage, as face cropping and alignment may improve feature
extraction discrimination capability.

B. Feature Extraction
The extraction of features from the images for training and

testing was made using a Deep Convolutional Network: VGG
Face [11]. The network has 21 layers (18 for convolution and
pooling and 3 for classification, respectively) plus a Softmax
function at the end for prediction purposes. VGG is pre-trained
on a celebrity database that contained 2.6 million images of
2,622 individual identities. Aiming only feature extraction, the
Softmax function is removed, and the resulting feature vector
for every image has 2,622 dimensions.

C. Siamese Networks
The SNN architecture is composed of two identical 3-layer

sub-networks, each layer is fully connected and composed of
2,048 neurons. The architecture and the number of neurons
were obtained empirically. The input layer has size 2,622,
which is the exact size of the output of the VGG Face feature
extractor. Fig. 3 presents the network architecture.

1) Pair Generation: The maximum possible number of
training samples pairings is the combination two at a time of the
n samples, i.e.,

( n
2

)
= O(n2). This can be costly, considering

that few iterations on training over almost n2 pairs can take very
long, as neural networks are expensive to train. Subsampling
is needed to reduce the number of pairs used in training.

Also, an evaluation on how the pairs choice impacts the
performance is desirable. Therefore, two methods of pair
subsampling were evaluated. These specific techniques were
selected empirically on initial experiments.

Fig. 3: SNN architecture. The weights of each FCN are shared
among the two separated internal pipelines of the network,
this means that the weights are the same (not that they are
connected). In the end, the output is the euclidean distance.

For explanation purposes, they are denominated: Algorithms
P1 and P2. The training samples set is denoted as S , and
the set of identities I . The function id() returns the identity
associated with the sample supplied as parameter. The proce-
dure rand sample() receives a set of identities and returns a
random sample that belongs to one of the identities provided.
In the end, each algorithm return two sets of pairs, PP and
PN, which correspond to the set of pairs of the samples from
the same (positive) and different persons(negative), respectively.
Algorithm P1 is described below and illustrated in Fig. 4a.

Both algorithms generate equal numbers of positives and
negatives pairs, for balancing purposes. P1 generates pairs
using the individual samples versus every other subject in
the gallery. For each training sample, pairings with z << n



Algorithm 1 Pairing 1

1: PN = [ ]
2: PP = [ ]
3: for x in S do
4: for i in I− id(x) do
5: c = 0
6: while c < z do
7: PN+= [x,rand sample(i)]
8: PP+= [x,rand sample(id(x))]
9: c+= 1

random samples from every other individual in the gallery
are generated. In cases where z is greater than the number of
samples of each individual, repeated pairs will occur. On the
other hand, P2 generates fewer pairs, only pairing samples with
a few other individuals randomly chosen. Every training sample
is paired with z random samples from other random identities.
Algorithm P2 is presented below and illustrated in Fig. 4b.

Algorithm 2 Pairing 2

1: PN = [ ]
2: PP = [ ]
3: for x in S do
4: c = 0
5: while c < z do
6: PN+= [x,rand sample(I− id(x))]
7: PP+= [x,rand sample(id(x))]
8: c+= 1

Observe that for P1, n× 2(k− 1)× z pairs are generated,
where k = |I |, while for P2 only n×2× z pairs are generated
and 2 stands for the “positive” and “negative” sets.

2) Loss and Distance Functions: The loss function chosen
is the Contrastive Loss [3], [28]. Contrastive Loss takes pairs of
samples and maps them into a space where intra-class samples
reside in neighbor areas and inter-class samples are far away.

The weights (W ) of the network are the parameters of the
mapping function (called G), that reduces the dimensionality
by mapping two feature vectors ~X1 and ~X2 into GW (~X1) and
GW (~X2) and computing the distance measure DW (~X1,~X2), i.e.,
DW (~X1,~X2) = ||GW (~X1)−GW (~X2)||. For simplicity DW (~X1,~X2)
is denoted DW and the final loss function [3] is defined as

L(W,Y,~X1,~X2) =
(1−Y )(DW )2+Y{max(0,m−DW )}2

2 (1)

where Y is 0 if the feature vectors belong to the same person
and 1 if they represent different identities, and the variable m is
a predefined margin around GW (~X1) or GW (~X2) that should be
greater than 0. In other words, if ~X1 and ~X2 belong to different
individuals and DW (~X1,~X2) is smaller than the m margin, the
loss function improves their separation, otherwise, no margin
changes are made.

The Siamese Network’s distance chosen is the euclidean
distance. Other commonly used distances are cosine similarity

and Manhattan distance, but in the experiments performed with
Contrastive Loss, euclidean distance outperformed both.

IV. EXPERIMENTS

In this section, the experiments executed to validate the
proposed approach are described. For such, the evaluation
metrics, datasets employed and the experimental protocols are
described. For literature comparison, we chose the work of
Vareto et al. [7], taking into account the clarity on the evaluation
protocol which assists reproducibility of experiments, enabling
a fair comparison.

A. Metrics

AUC (Area Under Curve) from the ROC (Receiver Oper-
ating Characteristic) curve is the metric selected for method
evaluation. It is a well-known technique as it describes the
algorithm performance on various thresholds. ROC curve shows
the relation between TPR (True Positive Rate) and FPR (False
Positive Rate). ROC curves with AUC closer to 1 indicate better
performance, while the ones with AUC close to 0.5 indicate
poor performance. Values below 0.5 are worst than random
guessing.

B. Datasets

One of the most challenging and used datasets for Face
Recognition is certainly LFW [16]. However, as previously
stated, there is no universal protocol for open-set evaluation
and for literature comparison. The first two datasets described
below are used for literature comparison, and, the third one is
used for evaluating the proposed (new) protocol.
PubFig83: Pubfig83 is a subset of the original PubFig [29]. It
has only 83 subjects and 13,838 uncontrolled images (average
of 166 samples per subject). Ranges from 89 to 367 samples
available per subject.
FRGCv1: This is the dataset provided for the Face Recognition
Grand Challenge v1.0 [9]. It will be used to compare with
Vareto et al. experiments. It has a total of 50,000 images and 6
experiments. Tests were only conducted on experiment 1 and
4. The first experiment is composed of 760 controlled images
and the fourth has 152 controlled photos + 1064 uncontrolled
ones. Both experiments have 152 distinct subjects.
LFW: LFW is a well-known dataset among face recognition
researchers, in fact, one of the most used for face recognition. It
consists of 13,233 uncontrolled images of 5,749 people. Many
subjects in this dataset have only 1 sample available. Some
have more than 15 images.

C. Experimental Protocols

The main issue in choosing the experimental protocol (EP)
lies upon the lack of consensus among authors on which is
the best protocol for open-set recognition evaluation. Also, the
protocol is usually not clearly stated making reported results
unable to be reproduced and compared fairly.

As we are comparing our proposal to the one by Vareto et al.
[7], and their protocol is well described, we used their protocol,
which we refer to as Experimental Protocol I.



(a) Pairing Algorithm 1. (b) Pairing Algorithm 2.

Fig. 4: Comparison of P1 and P2. All “Samples” columns represent the same samples. Note that in P1, the z pairs are formed
between the same identity and z pairs for each one of the other identities. P2, in contrast, generate z pairs choosing randomly
samples for any other identity (generating less pairs).

We also propose a slight modification on EP-I focusing
on small galleries, thus generating the so-called Experimental
Protocol II. The difference between these two protocols is that
in the EP-I, we choose a percentage of subjects, i.e., 10%, 50%
and 90% of identities in the dataset to be part of the known
individual, while in the EP-II an absolute number of subjects
(e.g., 5, 10, 15 and 20) is chosen.

In both protocols, the database is split into training and
testing data. The training data has only known individuals
(individuals that should be recognized by the method). The
testing data has known individuals unseen samples (samples
of the individuals that the method has never seen before) and
unknown individuals (samples of people the method has never
seen before).

The whole dataset is first divided between known/unknown
individuals. The known subjects are evaluated in different
scenarios, i.e., 10%, 50% and 90% of all dataset identities for
EP-I and 5, 10, 15, and 20 subjects for EP-II in the dataset and
the remainder is considered as unknown and is only used for
testing.

For each known identity, the samples are split in half: 50%
for training and 50% for testing. Each experiment on each
database is repeated 10 times by randomly splitting the data as
aforementioned, executing the method and, in the end, plotting
the ROC curves with AUC. The mean AUC is computed, along
with the standard deviation.

D. Experimental Results

In this section, we report results yielded by our proposed
method using: i) the EP-I (proposed by Vareto et al. [7]) on
the Pubfig83 [18] and FRGCv1 [9] (exp. 1 and 4) datasets
(Table I); ii) The new proposed EP-II on the LFW dataset [16]
(Table II); iii) the EP-I on the FRGCv1 dataset - exp. 4 for
comparison with the literature (Table III).
PubFig83 (EP-I): The proposed method achieved great results
in Pubfig83 for small galleries (few subjects known). Although

TABLE I: Results for experiments on Pubfig83 and FRGCv1
(Experiments 1 & 4) dataset using EP-I.

Pair
Datasets

Known Pubfig83 FRGCv1 FRGCv1
Rate Exp. 1 Exp. 4

AUC AUC AUC
P1 10% .981± .008 .996± .002 .938± .027
P2 .981± .007 .996± .003 .904± .032
P1 50% .922± .015 .986± .004 .868± .013
P2 .916± .018 .986± .003 .816± .019
P1 90% .856± .017 .972± .018 .797± .030
P2 .854± .025 .974± .008 .770± .021

with the increase of the number of subjects, the AUC dropped
significantly in 90% known. Statistically, there is no difference
between the pairings P1 and P2.
FRGCv1 - Experiment 1 (EP-I): In experiment 1 from
FRGCv1 dataset outstanding results are obtained as well.
We believe that this is due to the fact that there are only
controlled images on this dataset. There is no great challenge
in discriminating controlled images. There is no difference in
the results concerning the type of pairing used in training. The
increase in gallery size did not influence dramatically the AUC,
the difference is not statistically significant.
FRGCv1 - Experiment 4 (EP-I): When using small size gallery
better results than the bigger galleries are obtained, as in other
experiments. There is a significant discrepancy in the AUC rate
for a small gallery between P1 and P2, where P1 shows better
performance.
LFW (EP-II): The method performed well for small galleries,
taking into account that LFW is unbalanced in the number of
samples per subject and uncontrolled. There is no discrepancy
in the AUC rates for small galleries between P1 and P2.
Literature Comparison: As shown in Table III, for a small
number of identities (small galleries) the proposed method with
SNN can surpass state-of-the-art methods in experiment 4 on



TABLE II: Results of the experiments on LFW using EP-II.

Pair Known ROC (AUC)
P1 5 0.971±0.019
P2 0.969±0.019
P1 10 0.967±0.028
P2 0.967±0.030
P1 15 0.976±0.011
P2 0.946±0.006
P1 20 0.972±0.007
P2 0.977±0.008

FRGCv1. Note that we report the best result obtained by P1
(.938± .027) – from Table I. As there are approximately 150
identities, there are 15 subjects in the gallery. When there are
50% known people in the gallery (75 identities), no statistical
difference between the methods occurs.

TABLE III: Comparison with the work of Vareto et al. on
FRGCv1 - experiment 4.

Known Individuals AUC
10% 50% 90%

SN (proposed) mean 0.938 0.868 0.783
std 0.027 0.013 0.029

HPLS [7] mean 0.794 0.850 0.856
std 0.078 0.009 0.022

HFCN [7] mean 0.872 0.877 0.856
std 0.015 0.022 0.014

V. CONCLUSIONS

We introduced a recognition system, with well-defined
pipelines, that employs a SNN for open-set face recognition, a
task that still has not been extensively researched. We showed
that SNNs outperform state-of-the-art methods like HPLS and
HFCN on small galleries, being useful in applications on which
reliability is more relevant than scalability. Another contribution
is the Experimental Protocol II proposed for small galleries.

For future work, our goals are improving pairing selection,
testing new loss functions and also combining SNNs with other
metric learning methods to enhance performance.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian Na-
tional Research Council – CNPq (Grants #313423/2017-2,
#311053/2016-5, and #428333/2016-8), the Minas Gerais Re-
search Foundation – FAPEMIG (Grants APQ-00567-14 and
PPM-00540-17), the Coordination for the Improvement of
Higher Education Personnel – CAPES (DeepEyes Project), and
also acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research.

REFERENCES

[1] Z. L. Stan and K. J. Anil, Handbook of face recognition. Springer, 2011.
[2] R. Chellappa, P. Sinha, and P. J. Phillips, “Face recognition by computers

and humans,” Computer, vol. 43, no. 2, 2010.
[3] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric

discriminatively, with application to face verification,” in CVPR, vol. 1,
pp. 539–546, IEEE, 2005.

[4] G. Salomon, R. Laroca, and D. Menotti, “Deep learning for image-based
automatic dial meter reading: dataset and baselines,” in International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2020.

[5] D. V. Ruiz, G. Salomon, and E. Todt, “Can giraffes become birds? An
evaluation of image-to-image translation for data generation,” COTB,
2020.

[6] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.

[7] R. H. Vareto, S. Silva, F. Costa, and W. R. Schwartz, “Towards open-
set face recognition using hashing functions,” in Biometrics (IJCB), 2017
IEEE International Joint Conference on, pp. 634–641, IEEE, 2017.

[8] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
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