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Abstract

Open-set face recognition characterizes a scenario where unknown individuals, unseen during the training and enrollment
stages, appear on operation time. This work concentrates on watchlists, an open-set task that is expected to operate at
a low False Positive Identification Rate and generally includes only a few enrollment samples per identity. We introduce
a compact adapter network that benefits from additional negative face images when combined with distinct cost func-
tions, such as Objectosphere Loss (OS) and the proposed Maximal Entropy Loss (MEL). MEL modifies the traditional
Cross-Entropy loss in favor of increasing the entropy for negative samples and attaches a penalty to known target classes
in pursuance of gallery specialization. The proposed approach adopts pre-trained deep neural networks (DNNs) for face
recognition as feature extractors. Then, the adapter network takes deep feature representations and acts as a substitute
for the output layer of the pre-trained DNN in exchange for an agile domain adaptation. Promising results have been
achieved following open-set protocols for three different datasets: LFW, IJB-C, and UCCS as well as state-of-the-art
performance when supplementary negative data is properly selected to fine-tune the adapter network.
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1. Introduction

In open-set face recognition, there is no guarantee that
a person caught on camera has been previously enrolled in
the gallery of known individuals. Within the open-set task,
there are watchlists, a scenario that must operate at a very
low False Positive Identification Rate (FPIR) as a foresight
that the majority of queried individuals are not expected
to be registered in the gallery set. When a detected face is
mistakenly assigned to one of the identities, it raises a false
alarm (a false positive identification) that usually triggers
human actions and, therefore, must be avoided to decrease
both operational cost and personal discomfort of innocent
citizens [1, 2]. Additionally, subjects of interest may be
either missed by a face detector or erroneously classified
as unknown individuals or assigned a different identity.

Face biometric systems using deep convolutional neural
networks have matured into an age of ubiquitous deploy-
ment and high performance in recent years. However, most
researchers have left open-set problems aside and chan-
neled their efforts into closed-set identification and veri-
fication applications. Recently, an outstanding vendor of
face recognition technology suffered considerable criticism
for matching USA congress members to mugshots of crim-
inals [3]. The incident became an eye-opener on the risks
of such commercial identification systems as false alarms
can substantially bias security personnel while increasing
the responsibility for officers to thoroughly verify the re-
sults of the surveillance system. After all, no one would

be contented with innocent people being held up by law-
enforcement agencies due to a biometric system error.

Neural networks are biased toward the data they have
been trained on and rarely work well with unknown classes.
Fig. 1, adapted from Dhamija et al. [5], illustrates such
behavior on a handwritten digit and character recognition
task. Charts (a) and (b) demonstrate that unknown sam-
ples (gray dots) cover most of the known classes when the
cross-entropy loss is employed, which proved to be insuf-
ficient for open-set problems. Contrarily, adopting a cost
function that duly handles negative samples attains better
class separation and achieves superior performance.

Although the illustration 1(c) may hold true for ele-
mentary problems holding abundant samples and very few
classes, it is not guaranteed that such behavior would prop-
agate to more demanding biometric applications [2, 6]. In
favor of investigating neglected real-world face problems,
this study evaluates how open-set loss functions assist neu-
ral networks when the training data consists of a few in-
stances per identity. We propose Maximal Entropy Loss
(MEL)1, a function that adds a penalty margin to known
identities and increases the entropy for negative samples
as it guides a network into differentiating unknown from
known subjects. We also implement with an adapter net-
work that is quickly trained by inputting deep features ob-
tained with leading face architectures and avoid retraining
deep backbones every time the gallery set is updated.

1OpenLoss Package: https://pypi.org/project/openloss/
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(a) Known classes only (no negatives) (b) Extra class with negatives (Garbage) (c) Objectosphere Adaptation

Figure 1: Boosting unknown detection with negative samples. The behavior of three different approaches when trained with
additional negative data and evaluated with unknown samples. LeNet++ network [4] topologies are trained on 10 MNIST classes (knowns,
colored dots) and evaluated with EMNIST letters (negatives, black) as well as Devanagari letters (unknowns, gray).

This work discloses how a compact adaptation net-
work, equipped with few fully-connected layers, responds
to open-set protocols on three different datasets, namely
LFW, IJB-C and UCCS [7–9]. We exploit data that do
not require domain adaptation to perform gallery special-
ization, in which the knowledge obtained from networks
pre-trained on large face datasets is reused to boost perfor-
mance on related face recognition tasks. We evaluate three
architectures for feature extraction, including AFFFE [10],
a deep-feature extractor adapted to handle misaligned and
blurry faces; VGGFace2 SEnet50 [11], a backbone that
takes advantage of its squeeze-and-excitation blocks; and
ArcFace [12], a ResNet-101 network that applies a special
loss for producing better-suited face representations.

The proposed approach actually differs from most in-
vestigations available in the literature. To the best of our
knowledge, no genuine open-set face recognition work has
been evaluated on the IJB-C benchmark. Most methods
typically aim at improving open-set recognition by provid-
ing better feature embeddings for face verification, which
comprises a different biometric task. Moreover, MEL is
the first loss function to simultaneously penalize known
and negative samples. Its distinctiveness drives the net-
work toward learning more discriminative face embeddings
as it meticulously searches for enhanced parameters.
The major contributions of our work are:
(a) We evaluate distinct cost functions as well as pro-

pose MEL, a novel loss function that maximizes the
entropy in order to make training more rigorous.

(b) We further analyze the Objectosphere loss [2] in fa-
vor of verifying how it modifies the feature vector
norm of training and test face samples.

(c) We present an adapter network that accelerates the
computationally-expensive retraining or fine-tuning
of deep convolutional neural networks.

(d) We conduct a detailed open-set analysis of all evalu-
ated cost functions on datasets containing thousands
of identities but few samples per class.

(e) We run experiments to verify whether the proposed

approach is effective when combined with distinct
deep feature extractors and evaluated on well-known
open-set face recognition datasets.

The remainder of this work is organized as follows: Sec-
tion 2 provides an overview of related work. Section 3
describes the proposed approach: a compact adaptation
network combined with MEL or other open-set loss func-
tions. Section 4 exposes the experimental evaluation on
three different face datasets. Section 5 presents a thorough
discussion of the attained results and Section 6 finishes up
with the conclusion and final words.

2. Related Work

Most modern face recognition systems rely on deep
convolutional neural networks (DNNs) [12–19]. Strategies
have been designed to achieve better identification perfor-
mance on difficult images, such as margin-based or triplet
loss, and different network topologies [11, 20, 21]. How-
ever, DNNs are not usually designed to handle facial im-
ages with a low optical resolution, or even false-positive
face detections. Besides, the aforementioned works do not
“disregard” low-interest samples and, as a result, end up
matching all unknown identities with their respective most
similar subjects from the gallery set.

Vareto et al. [22] combined hashing functions to set up
a vote-list histogram. Some researchers have adopted one-
vs-all SVM or PLS models [23, 24] whereas others explored
clustering techniques [25, 26]. The aforementioned meth-
ods neither implement the entire closed-set identification
pipeline nor comply with the requirements of real-time or
real-world applications. Most present-day methods aim at
improving closed-set recognition or person re-identification
problems and rarely consider open-set protocols [15–17].
Others typically focus on open-set recognition by provid-
ing better feature embeddings for face verification, which
comprises a different biometric task [12, 18, 19]. Moreover,
Hassen et al. [27] introduced a loss function that draws
same-class samples near and Zhou et al. [28] introduced
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an additional layer to store class-specific thresholds. Re-
searchers have also explored adversarially-generated sam-
ples for “balanced” decision boundaries among known and
unknown classes [29–31]. However, these approaches have
been evaluated on datasets holding numerous samples per
class and, as a consequence, they are not an accurate por-
trayal of real-world biometric problems.

Most used datasets in non-face open-set recognition are
CIFAR [32], MNIST [33], SVHN [34] and TinyImageNet, a
subset of ImageNet [35], to name a few. They range from
5 to 20 classes in the known set, but each class encom-
passes myriads of samples. Approaches evaluated on such
data are not hampered by the shortage of image samples
available for training and, in fact, better preserve the in-
herent data distribution [36]. Labeled Faces in the Wild
(LFW) [7] used to be the leading facial benchmark. LFW
contains 13,233 images unevenly distributed among almost
six thousand classes. As it was initially designed for verifi-
cation, experts have proposed non-official open-set proto-
cols [37, 38]. IJB-C [8] contains two disjoint gallery parti-
tions of known individuals merged together for closed-set
recognition. The open-set protocol requires the use of a
single gallery partition and, hence, half of the probe sub-
jects have no corresponding match in the gallery set.

In contrast to IARPA’s benchmarks, the original Un-
Controlled College Students (UCCS) dataset [39] and its
extended version [9] mandate for faces to be detected as
part of the recognition pipeline. The UCCS dataset con-
sists of images captured at a university campus covering
different weather conditions. UCCS’s gallery set encom-
passes 1,085 known subjects, with approximately 20 in-
stances per class, and countless face samples not labeled
to any of the known identities. There are several partially-
occluded faces due to lamp posts and tree branches along
with accessories like sunglasses, hats, hoodies, or fur jack-
ets that make both detection and recognition in UCCS
benchmark a challenging task.

In summary, few works have designed methods to prop-
erly tackle open-set face recognition with mechanisms that
enable the network to differentiate individuals of interest
from unknown people in a scenario with thousands of iden-
tities but few samples per class. With that in mind, we
evaluate our proposed approach on realistic face datasets
as a meaningful contribution to the biometric discipline.
Due to these fundamental properties and their intrinsic
open-set nature, we use both IJB-C and UCCS datasets
along with LFW in our experiments.

3. Proposed Approach

A watchlist application S generally consists of three
sequential stages: S = Sd → Sr → Sc and should raise
an alarm only when probe samples belong to gallery set
G. Subsystem Sd corresponds to the face detection and
landmark localization method locates faces in the original
input image. For every detected face, the representation

module Sr extracts a corresponding numerical feature vec-
tor. The identification subsystem Sc assigns one of the
gallery identities g ∈ G to the probe face sample. As
shown in Fig. 2, we introduce an additional adaptation
module Sa that takes original features from the represen-
tation stage and further transforms them into attributes
that are better suited for the task at hand.

Template Tg = Sa(Sr(Sd(xg))) corresponds to the mean
representation of subject g when multiples sample are avail-
able per class. Similarly, Fp = Sa(Sr(Sd(xp))) becomes
the probe representation. The classification subsystem Sc

computes a similarity score s(Tg, Fp) between Fp and tem-
plate Tg for each known individual g ∈ G. Then, Sc rejects
probe samples as unknown when they attain scores lower
than θ for every subject of interest. If not, Fp is assigned
to the identity holding highest score maxg∈G s(Tg, Fp).

The compact adapter network Sa aims to establish a
drastic difference between gallery subjects and unknown
faces. Therefore, it is not possible to enroll new subjects
in the gallery set without retraining. Since we rely on fea-
tures extracted from representational network Sr, retrain-
ing the adapter network Sa is fast and can be performed
whenever a new subject needs to be enrolled – given that
watchlists are oftentimes relatively stable over time.

3.1. Training

One of the fundamental aspects behind the procedure
depicted on Fig. 2 is that any pre-trained network, such
as VGGFace2 [11], AFFFE [10] and ArcFace [12] can be
adopted as the pipeline’s face representation subsystem
Sr. Consequently, the proposed approach does not require
time-consuming retraining of massive deep networks every
time a new subject is inserted into gallery G since a small
adapter network Sa fits the extracted set of representations
Rg = Sr(xg) ∀ g ∈ G.

Adapter Network. The adapter network Sa consists of a
multi-layer perceptron network with fully-connected lay-
ers. In fact, Sa is composed of an input layer Li, two
hidden layers Lh1 and Lh2, and an output layer Lo. The
input layer takes in feature vectors R extracted with a
pre-trained DNN Sr and, therefore, its size varies accord-
ing to the deep feature dimension. The first hidden layer
Lh1 incorporates a non-linear hyperbolic tangent activa-
tion function that outputs values in the range −1.0 to +1.0
whereas Lh2 delivers a compact feature representation.

The learning strategy is similar to the training process
followed by traditional face recognition systems: we set the
output layer Lo to hold a size analogous to the number of
gallery-enrolled identities. In other words, each last layer’s
logit node Lo

g ∈ Lo, also denoted as lg ∈ Lo, stands for
the corresponding activation of known subject g ∈ G. In
general, these activations are employed for open-set face
classification but they present inferior performance when
compared to the distance computation of deep features
obtained with neural networks [2].
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Figure 2: Proposed Pipeline. Given any set of images, train-
ing features comprising known and negative samples are input to
the proposed adapter network Sa for learning parameters that min-
imize the adopted loss function. Compact 256-dimensional features
from the penultimate layer of Sa are averaged to build a gallery of
templates (T ) during enrollment. On testing, compact features are
extracted from probe data and compared with gallery templates T
through cosine similarity.

The adapter network has been originally designed as
a conventional multi-layer perceptron network. Ordinar-
ily, its output logit layer Lo could be associated with the

Softmax activation function AS and assumes a role as the
ultimate recognition phase:

AS(lg) =
elg∑

1≤g′≤|G|
elg′

(1)

However, it performs differently considering that Sa also
provides discriminative feature representations that are re-
quired in the subsequent similarity classification subsys-
tem Sc (see the blue rectangle in Fig. 2). The adapter
network yields its two last layers during the training stage:
logits from Lh2 input Objectosphere while Lo values feed
the remaining loss functions as detailed below.

Entropic Open-Set Loss (JE) [5]. The Entropic Open-set
loss comes to maximize the uncertainty of negative sam-
ples by inducing their Softmax responses to lie uniformly
distributed. JE boosts the maximum entropy distribution
of uniform probabilities from negative samples over all |G|
known classes registered in the gallery set G. In the classic
Cross-Entropy loss, tg represents a one-hot vector holding
the value of one at the index that corresponds to known
class g. Under the inclusion of negative instances, JE at-
tributes uniform values to target vector ∀g : tg = 1

|G| in

such a way that unseen samples are considered as equal
members of each known identity:

JE = −
∑

1≤g≤|G|

tg logAS(L
o
g(Rx)) (2)

Maximal Entropy Loss (JM ). The proposed Maximal En-
tropy loss associates the previously stated Entropic Open-
set loss with margin-based Softmax (ASm) [40, 41]. Equa-
tion (3) points out how ASm affixes a non-negative penalty
margin m to AS in order to decrease the intra-class dis-
tance and maximize the segregation among distinct classes.
As the penalty increases, a network learns parameters that
push samples more firmly toward their class centroids. The
parameter defines a distance among different classes and,
consequently, draws same-class samples closer [40].

ASm(lg) =
elg−m

elg−m +
∑
g′ ̸=g

elg′
(3)

The Maximal Entropy Loss JM combines the best of
both worlds since the Soft-Margin Softmax targets known
training samples whereas the Entropic Open-set handles
negative instances available during the learning stage. More
precisely, function JM maximizes the entropy regarding
the correct target class when x ∈ G in the interest of
making the closed-set identification more rigorous and, as
a result, equips the adapter network with more discrim-
inative weights. The handicap parameter m establishes
a decision boundary for a more appropriate separation of
known individuals:

JM =


− logASm(Lo

g(Rx)) if x ∈ G

− 1
|G|

|G|∑
g=1

logAS(L
o
g(Rx)) if x /∈ G

(4)
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For a negative sample x /∈ G, the designed loss uni-
formly distributes the target variable score among all g ∈
G subjects in an attempt to support the network in dis-
tinguishing gallery-enrolled subjects from unknown iden-
tities. Similar to the aforementioned JE loss, the insight
of equalizing logit values for unknown samples lies behind
not knowing anything about their corresponding identity
and, therefore, they hold an equivalent likelihood of be-
ing assigned to any subject registered in the gallery set.
Analogous to Dhamija et al. [5], the overall error obtained
with JM is minimized when the Softmax responses AS(·)
of negative samples are equally distributed.

Objectosphere Loss (JO) [5]. Objectosphere dissociates rep-
resentations of known and negative samples by directly
modifying their feature magnitudes. Since JE cannot guar-
antee that such a pattern would be generated for unknown
samples, Fig. 1(c) illustrates that Objectosphere modifies
the network weights to drive negative instances toward the
feature space origin. This is achieved by forcing the magni-
tude of negative features ||Lh2(Rx)||2 to be closer to zero
while simultaneously pushing known feature magnitudes
to at least ξ, a required hyperparameter for Objectosphere.

JO = JE + λ

{
max(ξ − ||Lh2(Rx)||2, 0)2 if x ∈ G

||Lh2(Rx)||22 if x /∈ G
(5)

Larger ξ values scale up deep features, including those ex-
tracted from unknown samples, which can be compensated
by lower weights in the last layer Lo; however, what actu-
ally makes a difference is the increased separation among
known, negative and, ultimately, unknown samples.

Additional Garbage Class (JG). With the high demand for
open-set recognition systems and the practicability of the
Cross-Entropy loss, accessible in every deep learning frame-
work, a common strategy is to add an extra class |G| + 1
to encompass negative samples. We refer to the adapter
network Sa trained with JG as the Garbage approach in
the experimentation section.

JG = −
∑

1≤g≤|G|+1

tg logAS(L
o
g(Rx)) (6)

3.2. Enrollment and Inference

The enrollment of subjects of interest is illustrated in
Fig. 2. It starts with the extraction of compact features
from all gallery samples in the interest of creating a gallery
of templates T . Equation (7) demonstrates that for each
known identity g ∈ G, a unique template Tg is established
by averaging the normalized compact features obtained
with the adapter network where |Kg| is the number of
enrollment samples available for subject g.

Tg =
1

|Kg|
∑

1≤k≤Kg

Sa(Sr(Sd(xg,k))) (7)

Analogous feature vectors are obtained for probe images
xp ∈ P during the inference stage by employing the very
same representational and adaptation networks utilized in
the enrollment phase:

Fp = Sa(Sr(Sd(xp))) (8)

Then, the classification module Sc computes similarity
scores between probes and all gallery-enrolled identities
through the angular cosine similarity:

s(Tg, Fp) = cos(Tg, Fp) =
Tg

TFp

||Tg|| · ||Fp||
(9)

It is worth mentioning that we have also investigated other
similarity-based functions that make use of probe feature
magnitudes [2, 5]; however, they include several issues that
have not been addressed in this work.

4. Experiments

This section presents the experimental evaluation of
the approaches described in Section 3. It starts detailing
the adopted evaluation metrics, assessed methods, and a
description of the experimental setup along with the ex-
plored datasets. Further, it provides an experimental as-
sessment of the obtained feature magnitudes and a com-
parison between the traditional Cross-Entropy and the
negative-based cost functions, namely Entropic Open-set,
Objectosphere, and the proposed Maximal Entropy Loss.

4.1. Evaluation Metrics

We adopt the open-set ROC curve [42–44], which plots
the True Positive Identification Rate (TPIR) against the
False Positive Identification Rate (FPIR) by varying the
rejection threshold θ. TPIR is computed solely on probe
samples of known subjects K by considering probes to be
correctly identified if the similarity to the correct identity
g∗ is the highest and above operating threshold θ:

TPIR(θ) =
1

|K|

∣∣∣{Fp ∈ K | argmax
g∈G

cos(Tg, Fp) = g∗

∧ cos(Tg∗ , Fp) ≥ θ
}∣∣∣ (10)

FPIR corresponds to the false alarm rate triggered by un-
known samples U. A false positive identification occurs
when the similarity of an unknown sample Fp to any of
the known subject templates Tg is larger than threshold θ:

FPIR(θ) =
1∣∣U∣∣ ∣∣∣{Fp ∈ U | max

g∈G
cos(Tg, Fp) ≥ θ

}∣∣∣ (11)

An optimal open-set face identification system presents a
TPIR of 1 at an FPIR of 0. By varying the threshold θ,
the open-set ROC curve can be created.
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(c) ArcFace

Figure 3: LFW Evaluation. Open-set ROC charts are shown for VGGFace2, AFFFE, and ArcFace features. Due to the small size of
the LFW dataset, FPIR values smaller than 10−3 cannot reliably be computed and are, hence, left out. Because of the small amount of three
training samples per identity, the adapter network is not able to provide more meaningful features than the representation network Sr.

4.2. Evaluated Datasets

We utilize a data partition [26, 37] that splits LFW into
three disjoint groups: 602 known, 1070 negative, and 4096
unknown identities. We use the provided hand-labeled
landmarks available in LFW dataset during the alignment
process. For IJB-C, we train the method on gallery A
only so that all gallery B matching identities available in
the probe set act as unknown face samples. Addition-
ally, LFW is incorporated as the negative set since none
of its classes are encountered in IJB-C. UCCS metadata
provides bounding boxes and identity labels, containing
either known subject identities or negative labels for un-
known faces. We incorporate the MTCNN face detec-
tor [45] as the default detection system Sd on IJB-C and
UCCS benchmarks. We employ the very same face detec-
tor throughout the experiments to standardize the face de-
tection stage. Following the evaluation protocol, all back-
ground detections of MTCNN serve as additional unknown
samples during testing in the UCCS dataset [9].

4.3. Evaluated Approaches

In the interest of comparing the proposed adapter net-
work along with Maximal Entropy and Objectosphere loss
functions to other methods, we incorporate four additional
approaches: Baseline, SoftMax, Garbage and Entropic.
Apart from Baseline, all evaluated methods run the com-
plete pipeline depicted in Fig. 2 in which the template
gallery consists of feature vectors extracted from the adapter
network Sa. In addition to the adapter network, we also
investigate whether it is beneficial to fine-tune the entire
feature backbone model on the gallery data, which has
been shown to be beneficial for larger datasets. Since this
training is much more time consuming, we restrict our ex-
periments to the largest and most difficult dataset, i. e.,
IJB-C. The seven evaluated techniques are:

• Baseline consists of creating a template set with the
original features extracted from the representational
system Sr and computing the cosine similarity.

• SoftMax follows the proposed pipeline by training
the adapter network Sa with Cross-Entropy loss, with-
out exploiting any negative samples (negative-free).

• Garbage extends SoftMax as it creates a template
Tg for each known individual g ∈ G along with an
exclusive template T|G|+1 holding negative samples.

• Entropic also follows the proposed pipeline, but this
time the Entropic Open-set loss is adopted to handle
known and negative samples (negative-based).

• Objectosphere adopts the Objectosphere loss to train
the adapter network with hyperparameters ξ = 1
and λ = 0.01, as specified in Equation (5).

• MaxEntropy consists of training the adapter network
Sa with the proposed Maximal Entropy loss, which
holds hyperparameter m = 0.40 as a default value.

• Finetuning involves training all layers of the adopted
architecture on the evaluated IJB-C dataset.

4.4. Network Setup

The network Sa benefits from representation systems
Sr, that is, AFFFE, ArcFace and VGGFace2 [10–12] with
1000, 512 and 2048-dimensional deep features, respectively.
The feature extraction counts on Bob’s [46, 47] biomet-
ric pipeline2 that handles face detection, alignment and
feature extraction. The adapter network Sa topology is
a compact fully-connected network with 512 and 256 neu-
rons in the two hidden layers. Given the aforestated hyper-
parameters, VGGFace2 composes the worst-case scenario
in which the adapter network would hold no more than
1.7 million trainable weights, which corresponds to a small
fraction of the total of 138 million parameters contained
in the deep backbone (98% less than VGG-16).

The pipeline is built upon PyTorch framework and con-
sists of 500 training epochs for all datasets. Convergence

2https://www.idiap.ch/software/bob/docs/bob/docs/stable/
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(c) ArcFace

Figure 4: UCCS evaluation. UCCS is a more challenging dataset than LFW as it comprehends a surveillance and unrestricted domain.
Therefore, training the adapter network using UCCS known and negative samples improves the performance over the Baseline, especially
when training and evaluation samples hold equivalent distribution.

on the validation set was commonly achieved in the first
150 epochs, only minor improvements have been encoun-
tered after 200 epochs. When disregarding the feature ex-
traction process performed in Sr, the training procedure
takes around 20 minutes for LFW, 80 minutes for UCCS
and no more than three hours for IJB-C on a regular multi-
core desktop computer with a singleNvidia Titan X GPU.
If more training speed is required, the network topology
can be adapted, the number of epochs can be reduced or
more GPU resources can be added.

4.5. Comparison to the State of the Art

In the interest of showing the advantage of MaxEntropy
and Objectosphere over SoftMax, Garbage and Entropic,
the adapter network Sa is trained on different face datasets
holding the very same topology and hyper-parameters for
all dependent methods. Figures 3 through 6 depict sev-
eral approaches in which all of them, except Baseline,
rely on Sa. Additionally, Tab. 1 provides a detailed list
of TPIR values for selected FPIR operating points, evalu-
ated on all three network topologies and all three datasets.
The results obtained on the three evaluated datasets are
described in the following paragraphs:

Labeled Faces in the Wild. Fig. 3 portrays the investiga-
tion on LFW considering different feature representations:
VGGFace2, AFFFE and ArcFace. Baseline presents an
outstanding performance using VGGFace2 representation
module in Fig. 3(a), implying that no supplementary data
is required for LFW due to its innate characteristics. Plots
(b) and (c) point out a comparable performance between
Baseline and negative-based cost functions.

There is an equivalent behavior with AFFFE when the
false-positive proportion exceeds three per thousand sam-
ples (3×10−3). ArcFace backbone equipped all approaches
with discriminative feature vectors so that very little can
be concluded in terms of accuracy. Note that four meth-
ods attained open-set performance greater than 95% in
(c) when FPIR surpasses 2 × 10−3. However, results are
substantially inferior under SoftMax or Garbage approach.

Unlike most recent face datasets, LFW consists of rea-
sonably good-quality images of cropped faces that coop-
erate with deep networks in delivering satisfactory feature
representations. As a consequence, computing the cosine
distance among original feature vectors, as performed by
Baseline, is sufficient to go toward the state of the art.
The small amount of data (three images per subject) seems
insufficient to train the adapter network with traditional
cost functions. The adopted non-official protocol [37] holds
nearly 9,300 samples in the probe set and, therefore, the
actual threshold value is estimated at no more than 10 im-
ages when the FPIR is less than 10−3. Moreover, the TPIR
performance score for scarce samples is not reliable in low
FPIR regions due to the natural threshold fluctuation.

UnConstrained College Students. Fig. 4 discloses the ex-
perimental evaluation on the UCCS benchmark. Along
with identities composing the gallery set, UCCS data en-
compasses both false positive detections (misdetections)
and faces from unknown subjects. MaxEntropy seems ca-
pable of attenuating the domain difference between the
source data used to train the representation network Sr

and the student population scope present in the UCCS
dataset. On the other hand, the domain adaptation seems
less impactful for ArcFace features, which indicates that
ArcFace architecture can be used in various domains.

Fig. 4(a) reveals that our approach can benefit from
the addition of negative samples as the best overall result
was achieved with the adapter network when trained with
the proposed Maximal Entropy loss. Fig. 4(b) also sig-
nalizes significant accuracy gained through the addition of
negative samples. The chart indicates that AFFFE face
representations are better adapted for low-resolution im-
ages than VGGFace2; however, both are surpassed by Ar-
cFace’s robust feature vectors. Fig. 4(c) shows that the
negative-exploring cost functions obtain analogous perfor-
mance: slight dominance of MaxEntropy when FPIR is
between 10−3 and 10−1. Although Baseline prevails in
the interval [10−1, 100], it attains lower accuracy in the
aforementioned range along with the other methods.
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(c) ArcFace

Figure 5: IJB-C + LFW evaluation. Open-set ROC charts are shown for AFFFE, ArcFace and VGGFace2 features. This evaluation
follows IJB-C’s open-set protocol test 4 with the addition of the entire LFW dataset as negative samples. Negative data diverging from the
gallery set distribution seem incapable to contribute to the method’s performance.
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(c) ArcFace

Figure 6: IJB-C evaluation. Open-set ROC charts are shown for AFFFE, ArcFace and VGGFace2 features. Negative samples are
obtained from gallery set B of IJB-C dataset. This evaluation does not adhere to IJB-C’s open-set protocol test 4. When negative samples
embody the same distribution as known samples, “negative-based” cost functions along with the adapter network outperform the Baseline.

IARPA Janus Benchmark C series. Fig. 5 exposes exper-
iments on IJB-C merged with more than 13,000 negative
samples acquired from LFW. The discrepancy3 in image
resolution and pose variations between both datasets ends
up reflecting on the results as LFW does not play a decisive
enhancement role in the proposed adapter network’s iden-
tification performance when assessing IJB-C benchmark.
The three plots suggest that the Finetune approach could
not maintain the generalization capability of the original
backbone performance either combined with cosine simi-
larity (Baseline) or the adapter network.

According to Fig. 5(a), negative samples do not seem
to provide significant improvement when evaluating VG-
GFace2 feature vectors and, in fact, they turn out to im-
pair Objectosphere’s exactness. Fig. 5(b) corresponds to
experiments containing AFFFE features and shows that
Baseline outperforms all other approaches. MaxEntropy

attains comparable performance at a low false positive
identification rate when it ranges from 1×10−3 to 3×10−3.

3IJB-C contains images without standardized traits whereas LFW
comprises mostly good-quality images with close-to-frontal faces.

ArcFace experiments in Fig. 5(c) also demonstrate the
dominance achieved with the Baseline approach. An ap-
proximate accuracy is reached by the MaxEntropy method
when FPIR comprises the area to the left of 2× 10−3.

5. Discussion

This section examines the effect of training the adapter
network with different-distribution data: IJB-C consists of
lower-resolution images with a wider range of poses and
expressions when compared to LFW. Tab. 1 provides a
complete view of the results for different FPIRs.

5.1. Differences between IJB-C and LFW

Dhamija et al. [5] pointed out that the choice of neg-
ative samples plays an important role when training an
open-set network. Fig. 8(a) shows that LFW does not fol-
low the same feature distribution as IJB-C. As revealed
in Fig. 5, selecting LFW to compose the set of negative
samples could not provide further improvements and out-
perform the baseline method on IJB-C dataset except for
experiments containing VGGFace2 representations.
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Table 1: Open-set ROC evaluation. Open-set ROC results are shown for AFFFE, ArcFace and VGGFace2 feature representations on
the three evaluated datasets, namely LFW, UCCS and IJB-C. Each cell consists of the True-Positive Identification Rate where False-Positive
Identification Rate value is indicated in the first column (TPIR@FPIR). Best values per model are highlighted in bold, second in italics.

O-ROC Datasets: LFW UCCS IJB-C
FPIR Methods VGG2 AFFFE ArcFace VGG2 AFFFE ArcFace VGG2 AFFFE ArcFace

100

Baseline 0.99128 0.99128 0.99631 0.79398 0.88193 0.92892 0.72426 0.77669 0.90307
SoftMax 0.96887 0.96887 0.98649 0.80361 0.82651 0.88795 0.68137 0.47853 0.66994
Garbage 0.96264 0.96264 0.98034 0.76747 0.81325 0.88313 0.67525 0.40368 0.61595
Entropic 0.95268 0.95268 0.99631 0.79036 0.86506 0.90000 0.69240 0.73374 0.85521

Objectosphere 0.95143 0.95143 0.99631 0.77831 0.87108 0.91205 0.67034 0.70920 0.82699
MaxEntropy 0.95641 0.95641 0.99631 0.79639 0.87108 0.91566 0.70711 0.73006 0.86626

10−1

Baseline 0.97136 0.87975 0.99386 0.62651 0.83253 0.88313 0.56127 0.61104 0.88466
SoftMax 0.91158 0.61595 0.91646 0.71084 0.76988 0.82771 0.52574 0.31043 0.57301
Garbage 0.89788 0.61595 0.95577 0.68193 0.76145 0.82048 0.52083 0.23926 0.49939
Entropic 0.91283 0.84540 0.99017 0.73253 0.83012 0.87952 0.53064 0.55092 0.81227

Objectosphere 0.92030 0.84540 0.99140 0.71807 0.84819 0.90000 0.47181 0.51656 0.73865
MaxEntropy 0.92030 0.86258 0.99386 0.71928 0.83976 0.89398 0.54289 0.55951 0.82454

10−2

Baseline 0.90909 0.69693 0.99509 0.44940 0.64337 0.70120 0.32230 0.41227 0.77178
SoftMax 0.78207 0.39018 0.82310 0.54699 0.55783 0.66024 0.32598 0.17546 0.44908
Garbage 0.74595 0.38160 0.89312 0.55060 0.60482 0.67108 0.33211 0.13129 0.38773
Entropic 0.82067 0.66748 0.98526 0.57229 0.66988 0.71325 0.37745 0.33742 0.69202

Objectosphere 0.83935 0.67853 0.98894 0.56386 0.66024 0.72410 0.26348 0.27853 0.53988
MaxEntropy 0.82939 0.68466 0.99017 0.56747 0.66627 0.73253 0.37500 0.34479 0.70552

10−3

Baseline 0.74720 0.45767 0.79238 0.29277 0.35663 0.35060 0.14093 0.21104 0.39387
SoftMax 0.51059 0.18405 0.51966 0.33614 0.26988 0.31325 0.22304 0.09816 0.34969
Garbage 0.38979 0.18405 0.76290 0.32651 0.28916 0.32651 0.20221 0.05276 0.28221
Entropic 0.62889 0.42209 0.61794 0.34337 0.35301 0.34337 0.21814 0.17301 0.36319

Objectosphere 0.56663 0.41104 0.66216 0.30120 0.33976 0.33614 0.16299 0.08834 0.38405
MaxEntropy 0.64010 0.35583 0.55283 0.35904 0.31687 0.36145 0.23897 0.18650 0.40982

IJB-C probe samples as well as its enrollment data
are distributed differently. More precisely, gallery-enrolled
samples contain mostly good-quality still photos whereas
probe samples are mainly composed of low-resolution still
images or blurred video frames. We tend to believe that
the adapter network Sa over-adapts to good-quality en-
rollment samples when it inputs only high-standard data.
Therefore, module Sa ends up lowering the performance
on IJB-C by rejecting many probe samples as unknown.
Selecting enrollment and probe data with similar distribu-
tion is likely to increase performance.

Fig. 6 discloses an additional set of experiments on IJB-
C benchmark in which gallery A populates the known set
and gallery B composes the negative set for Entropic,
MaxEntropy and Objectosphere. This scenario affords
a related data distribution between both training sub-
sets. Despite probe and enrollment data sharing differ-
ent capture quality, results show that appropriate negative
samples significantly improve the open-set face recognition
pipeline. All charts indicate a dominance of MaxEntropy
over negative-free methods when FPIR lies below 10−1.
Factually, using ArcFace backbone achieves the highest ac-
curacy rate of all experiments conducted on IJB-C dataset.

We reckon that real-world watchlist applications would
scarcely ever contain negative identities overlapping with
unknown face samples. However, the assessment displayed
in Fig. 6 provides a reference point on the maximal identi-
fication correctness. Results show a recurring superiority
of MaxEntropy regardless of the adopted representation
network. Unlike Fig. 5, where gallery and negative sam-
ples hold contrasting data distribution, the resemblance

between both IJB-C disjoint galleries delivers discrimina-
tive class boundaries. Distribution-alike data is a must-
have aspect required by “negative-based” error functions
when seeking negative samples in exchange for a meaning-
ful contribution to the open-set recognition pipeline.

Although experiments showed in Fig. 6 do not ad-
here to the official IJB-C protocol, there are scenarios in
which this training scheme would be appropriate. For in-
stance, an enterprise may have premium clients that must
be treated differently than regular customers. They could
be addressed by name and offered a comfortable room
on the premises. Privileged customers constitute known
classes but the remaining ones are placed in the negative
set. Prospect customers (unknowns) lie somewhere in be-
tween and shall be treated better than the ordinary, but
not as good as premium. Consequently, the face recog-
nition system is supposed to raise an alert whenever pre-
mium customers come over.

5.2. Deep Feature Magnitudes

Objectosphere loss aims to push feature magnitude ex-
tracted from unknown samples to very low figures. It si-
multaneously attempts to shift the magnitude of known
samples toward a specified value ξ. Robust open-set meth-
ods are expected to achieve high accuracy in different data
with consistent parameters. This requirement plays an es-
sential role in biometrics as it is not possible to anticipate
the visual traits of all probe samples. Best results have
been attained on UCCS when setting Objectosphere pa-
rameters ξ = 1 and λ = 0.01, and we have verified that
these parameters also work well on LFW and IJB-C.
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Figure 7: UCCS magnitudes. All plots portray results obtained with probe data: Knowns designates subjects registered in the watchlist,
Unknowns specifies probe samples without corresponding identity in the gallery set, and Background refers to face misdetections. Feature
magnitude is an indicator that domain adaptation improves separation between known and unknown subjects. While SoftMax provides low
magnitudes for background and approximately half of the unknown samples, Objectosphere delivers even better separation.
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Figure 8: IJB-C and LFW magnitudes. Chart (a) exposes training feature magnitudes obtained with VGGFace2 in which knowns
and unknowns come from IJB-C and negatives derive from LFW. Plots (b) and (c) demonstrate how the adapter network Sa combined with
Objectosphere behaves on the evaluation data when trained with negatives coming either from LFW or IJB-C gallery B. Note that gallery B
provides better separation between knowns and unknowns whereas LFW is not sufficient to push the distributions apart.

Fig. 7 displays deep feature magnitude histograms for
UCCS evaluation data. Original VGGFace2 features hold
a considerable magnitude overlap among unknown and
known subjects as well as false-positive detections in the
background. The intersection remains when training the
adapter network with SoftMax, but Objectosphere re-
duces the coincidental area between known and unknown
samples. Basically, weights learned with Objectosphere

can distinguish enrolled subjects from unknown identities
during the testing stage. Known samples are distributed
closer to the desired target magnitude whereas negative
(background) samples have a peak close to 0, but are dis-
tributed throughout the range of magnitudes.

As indicated in Fig. 8(a), LFW images provide higher
magnitudes but IJB-C instances result in low-magnitude
representations. Deep networks may misclassify probe sam-
ples since the image quality has an impact on the acquired
feature vectors. Due to the lack of similarity between
IJB-C and LFW, the latter is not capable to guide the
adapter network Sa in discriminating IJB-C probe sam-
ples. Fig. 8(b) and (c) present probe feature magnitudes
when Sa is trained with negatives proceeding from LFW
or IJB-C’s gallery B. Note that the magnitudes are well-

above the intended separation threshold ξ = 1 and, hence,
appropriate negatives might help to separate further.

5.3. Proposed Approach Applicability

MaxEntropy requires a distance margin m in the inter-
val [0, 1] whereas Objectosphere includes sphere-related
and regularizing parameters (ξ and λ, respectively). As
a result, associating both losses culminates in the specifi-
cation of three hyper-parameters, not including the ones
regarding the adaptation network, such as the number of
neurons, learning rate, and batch size to name a few. Cost
functions that require the adjustment of multiple param-
eters make their deployment unfeasible in both academic
and realistic scenarios. Consequently, we do not combine
MaxEntropy with Objectosphere since a large number of
tunable parameters turns into an optimization problem.

We acknowledge that a desirable open-set face recog-
nition approach would only require the enrollment of sub-
jects of interest without the need to fine-tune the deep
representation backbone. However, the three evaluated
datasets are composed of numerous identities holding very
few samples per class in the training set, a common req-
uisite in watchlist problems. Since applying an untouched
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pre-trained representation model to dissimilar data dis-
tributions regularly results in a substantial accuracy loss,
the designed adapter network Sa offers a flexible trade-off
between computational time and correctness.

6. Conclusion

Pre-trained deep networks usually require considerable
time to be adapted and retrained to new domains, espe-
cially when the training data is constantly updated. This
is the scenario in which the proposed compact adapter
network comes in handy as it serves as a quick-trainable
replacement for the output layer. Moreover, the evalu-
ated cost functions take advantage of supplementary in-
formation when adding negative samples to the training
stage. Experiments have shown that additional samples
play an important role in “identifying” the unknown when
the training samples are sufficiently representative of the
uninvestigated feature space.

The proposed approach is suited for watchlists and
transfer-learning tasks since the adaptation network can
be attached to the output of any pre-trained deep network
model and be quickly adjusted to different data distribu-
tions. Retraining large deep backbones, such as ArcFace
and VGGFace2, every time a new identity is added to the
gallery set becomes categorically infeasible and has proven
to be counterproductive. The ArcFace network, for in-
stance, contains nearly 50 million weights in contrast to
394,850 parameters in the adapter network when trained
on LFW and inputting 512-dimensional feature embed-
dings from ArcFace/ResNet-100.

Experiments carried out on the open-set face recogni-
tion protocols of LFW, UCCS, and IJB-C have provided
a comprehensive analysis of the compact network and the
employed loss functions. The evaluation has shown that
the association of the adapter network with Objectosphere
or the proposed Maximal Entropy loss is capable of out-
performing the original deep features in many cases. As
detailed in the literature comparison, part of the adopted
negative images clearly boosted the performance of our
method whereas others encompassing distinct domains as
well as different data distribution were not adequate and
contributed little to the approach accuracy. How to ob-
tain or generate more effective negative samples will be
investigated in future work.

Acknowledgments

We are thankful to the Brazilian National Council for
Scientific and Technological Development – CNPq (Grants
309953/2019-7 and 203402/2020-0), the Minas Gerais Re-
search Foundation – FAPEMIG (Grant PPM-00540-17),
the Federal University of Minas Gerais (UFMG) and, es-
pecially, the University of Zürich (UZH).
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