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A B S T R A C T

This systematic literature review summarizes the current state of deep learning (DL) for semantic
segmentation in seismic data, focusing on facies segmentation. It presents the architectures, cost
functions and learning paradigms used in seismic data segmentation, and their results. Various DL
approaches and methodologies are discussed, highlighting challenges in evaluation procedures and
data availability. It also identifies research opportunities, such as robust benchmarking. Furthermore,
it discusses the potential of approaches such as few-shot and semi-supervised learning, transfer
learning, and ensemble techniques to address the challenge of limited labeled data. A comprehensive
discussion on the raised challenges can improve segmentation quality and provide more reliable
seismic facies interpretation.

1

1. Introduction2

The comprehension of subsurface geology and its ge-3

ometry is essential to understanding reservoir properties4

and supporting strategic decisions in the field (Chevitarese5

et al., 2018; Abid et al., 2022; Wang et al., 2023). The6

interpretation of geological features such as geobodies and7

lithostratigraphic facies or structures such as horizons and8
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faults in seismic data can be performed as a visual recog-9

nition task. However, interpreting seismic data is time-10

consuming, expensive and subject to observer-dependent11

expertise (Waldeland et al., 2018; Wang and Chen, 2021;12

Wang et al., 2023).13

Seismic methodologies have been used since the early14

1900s, primarily for assessing water depths and identify-15

ing icebergs (Mondol, 2010). Over time, these technolog-16

ical advances enabled their application in discovering oil17

reservoirs. Currently, seismic surveying holds a prominent18

position as the primary geophysical technique in the field19

of oil exploration. By recording acoustic wave propagation20

times, this methodology provides means to discern sub-21

surface rock formations, allowing for estimations of their22

geometrical configurations and intrinsic physical attributes.23

These signals are measures of the two-way travel time, i.e.,24

the amount of time it takes for a seismic wave to leave the25

wave generator, strike a reflecting surface, and then travel26

back to the receiver.27

Seismic data are therefore a representation of the acous-28

tic response of a seismic wave’s reflection caused by a phys-29

ical change in the propagation medium or a change in the30

rock characteristics (Bjørlykke, 2015; Herron, 2011; Nanda,31

2021). The seismic acquisition process typically collects32
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Figure 1: Seismic data. On the left, a schematic of the three-dimensional seismic data acquisition and axis nomenclature; on
the right, an example of an inline section from the seismic dataset F3 Netherlands (Silva et al., 2019).

three-dimensional data that, after many processing steps,33

result in an understandable cubic data volume describing the34

Earth’s subsurface. As depicted in Fig. 1, these data cubes35

are represented on the space spanned by three perpendicular36

axes: an inline axis, parallel to the acquisition direction; a37

crossline axis, perpendicular to the inline axis with which38

it defines a horizontal plane; and a time or depth vertical39

axis (EnergyGlossary, 2023). Therefore, an inline section40

or image is in a plane perpendicular to the crossline axis;41

a crossline section is perpendicular to the inline axis; and42

the time slice is a plane that is perpendicular to the vertical43

axis EnergyGlossary (2023).44

In geology, facies refer to distinct bodies of rock that45

possess specific characteristics, which can include observ-46

able attributes such as the rock’s overall appearance, com-47

position, or how it was formed, as well as any changes that48

may have occurred in these attributes across a geographic49

area (Reading, 1978). Facies’ features also include chemi-50

cal, physical, and biological properties that set them apart51

from neighboring rocks (Parker, 1984). Generally defined52

by depositional structures, geological structures, or even53

changes in fluid type, a seismic facies is a three-dimensional54

sedimentary unit composed of units of reflection patterns55

distinct from other neighboring facies (Roksandić, 1978).56

The lithology represented by the seismic facies can be more57

precisely identified using rock core samples and well profile58

data, but the costs involved in drilling and exploring these59

wells can be prohibitive (Li et al., 2022). An alternative60

strategy is leveraging computational methods, particularly61

deep learning techniques, to identify facies in seismic data.62

This approach significantly enhances efficiency and reduces63

the costs associated with the identification.64

Problem statement: Deep learning for seismic facies65

segmentation presents a unique challenge in terms of liter-66

ature organization, as different approaches may use diverse67

data formatting, training strategies, and evaluation metrics.68

This lack of standardization burdens researchers attempting69

to navigate the growing body of literature in this domain.70

The absence of standardized practices for organizing and71

presenting deep learning research can lead to several dif-72

ficulties, including limited reproducibility, inefficient liter-73

ature search, and barriers to collaboration. Managing the74

literature in deep learning for seismic facies segmentation75

is crucial for overcoming these challenges and fostering a76

more productive research environment.77

Therefore, the objective of this paper is to offer a thor-78

ough and critical examination of the literature related to the79

application of deep learning methods in facies identification.80

To achieve this, we conduct a systematic review encompass-81

ing literature on deep learning methods specifically applied82

to the segmentation of seismic data, with a concentrated83

emphasis on facies segmentation. We highlight the most84

relevant aspects discussed in those papers, such as the main85

goals, used datasets, employed architectures, metrics, and86

results. Most importantly, we provide an organized critical87

rundown of the literature, describing some of the challenges88

that researchers face in the field and opportunities for further89

exploration.90

To the best of our knowledge, this is the first literature91

review specifically focused on the literature of segmen-92

tation of seismic facies based on deep learning. Existing93
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studies in the domain predominantly gravitate toward fault94

detection and structural interpretation or geological hazard95

analysis. The review presented by Wang et al. (2018) is96

primarily centered on interpreting faults and salt domes.97

Their research compiled extensive interpretation workflows98

employing conventional and advanced image-processing99

techniques and machine-learning algorithms. Ma and Mei100

(2021) presented an overview on the application of deep101

learning methods for the analysis of geological hazards102

focusing on convolutional and recurrent neural networks.103

More recently, An et al. (2023) conducted a comprehensive104

survey of the literature on deep learning methods for fault105

interpretation. Similar to our findings, they also observed106

the prevalence of the UNet and its variants as the most107

frequently employed network architectures. Additionally,108

they highlighted the scarcity of publicly available datasets.109

Among a total of 73 cataloged seismic datasets, only three110

field datasets and four synthetic datasets are accessible for111

benchmarking purposes. In short, this survey proposes the112

following contributions:113

1. A systematic review of the literature on deep learning114

approaches for seismic data segmentation, especially115

facies delimitation;116

2. A description of the state-of-the-art on deep learning117

approaches used for seismic data segmentation, archi-118

tectures, cost functions, and results;119

3. A critical review of the literature describing the merits120

and shortcomings of the area, and from that, a discus-121

sion on the opportunities for future studies.122

2. Why Deep Learning?123

2.1. Traditional Techniques and Shallow Machine124

Learning125

The main approaches used for the interpretation of126

seismic images before the development of deep learning127

techniques include seismic attribute analysis (Chopra and128

Marfurt, 2005; Gao, 2007), pre-stack (Qian et al., 2018)129

and post-stack (Song et al., 2017) waveform classification130

methods, as also proposed in a recent study by Su-Mei et al.131

(2022).132

In the most general sense, the definition of seismic133

attributes refers to all quantities derived from seismic134

data (Chopra and Marfurt, 2005). There are dozens of135

distinct seismic attributes calculated from seismic data and136

applied to interpreting geological structure, stratigraphy,137

and rock/pore fluid properties. Compared to manual in-138

terpretation, attribute analysis greatly improves efficiency.139

However, the burden associated with its interpretation is140

still significant due to multiple seismic properties such as141

amplitudes, frequencies, and phases (Li et al., 2022). These142

properties can vary according to the geological characteris-143

tics of the subsurface and may affect the interpretation of144

the data. The complex interactions between seismic features145

and the target geological entities make it difficult to evaluate146

the accuracy of the categorization results.147

The waveform classification method generally follows148

two approaches: post-stack and pre-stack seismic facies149

classification. While the former essentially involves iden-150

tifying different waveform signal patterns (Qian et al.,151

2018), the latter exploits richer information, which can152

theoretically result in higher resolution and more accu-153

rate interpretation. Compared to seismic attribute analysis,154

waveform classification approaches can overcome their dis-155

advantages by carefully illustrating the lateral variation of156

the seismic trace, which expresses the flat distribution of157

anomalies (de Matos et al., 2007). However, this technique158

cannot be used in regions with significant changes in for-159

mation thickness, and efficient quality control rules must be160

implemented to provide high-quality data.161

The applicability and dependability of these traditional162

methodologies cannot satisfy the demands of contemporary163

seismic facies analysis due to the growing complexity of164

seismic data. In addition, the outcomes depend on the165

experts’ subjective evaluation (Zhang et al., 2019). Unfortu-166

nately, the fact that these conventional approaches still call167

for the manual selection of seismic attributes and that the168

interaction of those attributes directly impacts the perfor-169

mance is even more problematic. Moreover, since different170

geological environments differ greatly from one another, the171

combination of seismic properties chosen in one location172

cannot be immediately applied to another region (Li et al.,173

2022).174

The development of machine learning (ML) techniques175

encouraged many researchers to carry out automatic or176

semi-automatic facies identification. There is a very rich177

literature on shallow ML (supervised and unsupervised)178

methods for facies classification. Zhao et al. (2015) reviews179

some of the most commonly used techniques. For instance,180

Principal Component Analysis has been used by Wolf and181

Pelissier-Combescure (1982) to cluster and select seismic182

attributes. Delfiner et al. (1987) employed discriminant183
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functions to determine seismic facies classes and Liu et al.184

(2020b) were able to identify facies using a relevance185

vector machine (RVM) and developed a facies discriminant186

method based on a multi-kernel RVM.187

2.2. Deep Learning Techniques188

Over the past few years, much research involving seis-189

mic interpretation tasks has explored deep learning tech-190

niques to aid interpretation (Waldeland et al., 2018; Alaudah191

et al., 2019; Abid et al., 2022; Nasim et al., 2022; Tolstaya192

and Egorov, 2022; Li et al., 2022; Wang et al., 2023). Deep193

learning algorithms are powerful methods to discover repre-194

sentation from data in their raw form and map it to diverse195

tasks (LeCun et al., 2015). These techniques have achieved196

remarkable results over the past couple of decades in a197

wide range of tasks such as speech recognition (Deng et al.,198

2013; Hinton et al., 2012a), biometrics (Vareto et al., 2023),199

healthcare (Jiang et al., 2017), agricultural applications (Eli-200

Chukwu, 2019) and natural language processing (Chowd-201

hary and Chowdhary, 2020). Important advances took place202

since the late 80s when Rumelhart et al. (1986) introduced203

backpropagation, and LeCun et al. (1989) demonstrated204

that large backpropagation networks could be employed to205

image recognition with little preprocessing. In 1998, LeCun206

et al. (1998) showed the potential of convolutional neural207

networks (CNNs) as feature extractors, reducing manual-208

designed extractions.209

A breakthrough in the deep learning domain happened210

in 2012 when Krizhevsky et al. (2012a) published AlexNet,211

an innovative neural network that won the ImageNet com-212

petition (Deng et al., 2009) of that year by a significant213

margin. AlexNet further popularized the use of graphic214

processing units (GPUs) and CNNs, making it one of215

the most influential papers in the history of computer vi-216

sion. The subsequent years would reveal additional im-217

provements with the introduction of ZFNet (2013) (Zeiler218

and Fergus, 2014), VGGNet (2014) (Simonyan and Zisser-219

man, 2014), GoogLeNet (2014) (Szegedy et al., 2015) and220

ResNet (2015) (He et al., 2016). Each model continued to221

build on the success of the previous ones by changing the222

depth and size of the networks (Zeiler and Fergus, 2014),223

experimenting on different hyperparameters, or applying224

theoretical techniques, such as residual connections (He225

et al., 2016) and dropout (Hinton et al., 2012b) to handle226

overfitting and vanishing gradients. The success of these227

models relies on their ability to learn multi-level representa-228

tions through non-linear transformations from the raw data229

that support pattern recognition tasks (LeCun et al., 2015;230

He et al., 2016). Furthermore, these achievements have also231

occurred due to greater computing power in the form of232

GPUs.233

Despite being a geological assignment, identifying seis-234

mic features such as lithostratigraphic and seismostrati-235

graphic facies from a computational perspective is primarily236

a computer vision routine, particularly related to image237

segmentation tasks. Semantic segmentation is one of the238

most common computer vision strategies for visual pattern239

recognition (Long et al., 2015; Ronneberger et al., 2015;240

Lateef and Ruichek, 2019). It consists of labeling a class241

with semantic meaning for each region or pixel in an242

image (or video) (Lateef and Ruichek, 2019; Minaee et al.,243

2022), and has been applied in numerous specific contexts,244

such as analysis of medical images (Shen et al., 2022;245

He et al., 2021), autonomous driving (Li et al., 2018),246

and remote sensing (Li et al., 2021). Since before the247

deep learning era, many algorithms have been proposed248

to tackle this task, e.g., thresholding (Otsu, 1979), water-249

shed transformations (Najman and Schmitt, 1994; Neubert250

and Protzel, 2014), region-growing (Nock and Nielsen,251

2004), Felzenszwalb segmentation (Felzenszwalb and Hut-252

tenlocher, 2004), and Simple Linear Iterative clustering253

(SLIC) (Achanta et al., 2012). Other techniques relied on254

multiscale classification (Dos Santos et al., 2012), depend-255

ing on a stepped process that dealt with data representation256

(defining objects of interest), feature extraction (describ-257

ing texture or contours), and training a machine learning258

algorithms for classification, such as Support Vector Ma-259

chines (SVM) (Tzotsos et al., 2011) or shallow Neural260

Networks (Ouma et al., 2008). However, shallow machine261

learning approaches often have limited capacity to analyze262

raw data input (LeCun et al., 2015). They may require263

specific knowledge of the application field, which can be264

a significant issue in domain-specific tasks.265

Deep learning has also brought advances to computer266

vision tasks, constantly pushing the state-of-the-art for267

image classification (Krizhevsky et al., 2012b; Szegedy268

et al., 2015; Chen et al., 2023), object detection and269

instance segmentation (Girshick, 2015; He et al., 2017;270

Li et al., 2018), segment anything task (Kirillov et al.,271

2023) and semantic segmentation (Ronneberger et al., 2015;272

Badrinarayanan et al., 2017). Long et al. (2015) made273
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a breakthrough in semantic segmentation, proposing the274

use of fully-connected networks. Since then, many other275

architectures brought improvements to this concept, e.g.,276

utilizing U-shaped encoder-decoder architectures (Ron-277

neberger et al., 2015), preserving pooling positional in-278

dices (Badrinarayanan et al., 2017), and applying atrous279

convolutions (Chen et al., 2017b).280

Unsurprisingly, research in the oil and gas field has been281

eager to use the aforementioned algorithms to address seis-282

mic interpretation problems (Waldeland et al., 2018; Alau-283

dah et al., 2019; Wrona et al., 2021). This interest comes284

mostly as an alternative to aid and accelerate manual in-285

terpretations, since the massive volume of information con-286

tained in seismic data, especially 3D surveys, makes manual287

evaluation by experts costly and time-consuming (Walde-288

land et al., 2018; Liu et al., 2020a). Deep learning appli-289

cations in seismic interpretation include the employment of290

CNNs to classify salt domes (Waldeland et al., 2018; Shi291

et al., 2019), delineate geological faults/horizon (Bi et al.,292

2021), relative geologic time estimation (Bi et al., 2020),293

and facies segmentation (Liu et al., 2020a; Su-Mei et al.,294

2022; Monteiro et al., 2022).295

3. Systematic Review and Data Extraction296

This work employs a systematic review to comprehen-297

sively analyze the existing literature on deep learning mod-298

els utilized for the semantic segmentation of seismic images.299

The review entails selecting and analyzing relevant stud-300

ies, extracting their data, and synthesizing their findings.301

It organizes essential components of any research effort,302

including examining and synthesizing existing material of303

the state of knowledge in a study domain. More impor-304

tantly, this procedure can address inquiries that individual305

research endeavors might not be able to answer and identify306

shortcomings in primary research that should be resolved307

in subsequent studies (Page, 2021). Theses aspects include308

a discussion about the lack of experimental standardization309

and the choice of deep learning architectures for the domain.310

Finally, a systematic literature review and data collection311

method aims to reduce bias, improve the validity of the312

findings, and contribute to advancing knowledge in the area.313

Our study followed the steps suggested by Khan et al.314

(2003) and the Covidence Blog (Covidence) to conduct a315

systematic review. The first essential step is to formulate the316

questions that will be addressed, ensuring their relevance317

concerning the intended application of the review and the318

need to bridge existing knowledge gaps. This process assists319

in centering attention on the identified problem and main-320

taining a clear project scope.321

We structured this review to address the knowledge322

gap regarding the automated segmentation of geological323

features in seismic data using deep learning. From a geolog-324

ical perspective, it focuses on continuous features, such as325

lithostratigraphic and seismostratigraphic facies, channeled326

structures, and salt bodies, and, from a computational stand-327

point, on computer vision techniques mainly related to the328

image segmentation task.329

In the following sections, we describe the methods used330

in the review, including database selection, search key-331

words, inclusion and exclusion criteria, and data extraction332

methods. We also review strategies for evaluating the quality333

of the included research and approaches for data synthesis334

and presentation.335

3.1. Research methods336

After formulating the questions that will be addressed,337

the second stage of a systematic review is to search for338

relevant publications, usually in digital libraries. As this339

is a very laborious task, search engines are employed as340

look-up tools for returning publications according to a341

provided query and defined restrictions that may not have342

been filtered out in the queries. In this study, we used343

Harzing’s Publish or Perish (Harzing, A.W.), a software344

that searches for and analyzes academic citations. It is345

able to search across many search engines utilizing specific346

keyword queries, date constraints, and other settings. The347

outcome is shown on the screen and may be saved as a RIF348

file that can be imported into reference managers.349

To ensure the reproducibility of the workflow, all the350

applied search methods are described. The selected search351

engine was Google Scholar1, as it encompasses an extensive352

repository of scholarly papers spanning a wide range of353

disciplines. All searches were restricted by date, as in this354

review we were only interested in deep learning approaches355

that received major attention after the publication of the356

AlexNet (Krizhevsky et al., 2012b) in 2012. Therefore,357

we were interested in papers made public between 2012358

and May 2023. Despite that, only papers after 2017 were359

found within the aims of this review. To provide in-scope360

results, a series of queries were framed using geological and361

deep learning-related keywords. These queries are listed in362

1https://scholar.google.com
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Table 1
Searching queries and number of papers returned.

Query # Papers

seismic deep learning; depositional elements; architectural lobes; channels; semantic segmentation 151

geosciences; deep learning; depositional elements; architectural elements; lobes; meandering channels;
semantic segmentation; seismic 54

("facies turbidites") AND ("deep learning") 1

("facies turbidites" OR "architectural elements") AND ("semantic segmentation") AND ("geology") 15

("depositional elements" OR "architectural elements" OR "seismic" OR "facies turbidites") AND
("semantic segmentation") AND ("geology") 521

("depositional elements" OR "architectural elements" OR "facies turbidites") AND ("geology") AND
("seismic") AND ("semantic segmentation") 6

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("semantic segmentation") 32

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("semi-supervised") 39

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("self-supervised") 1

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("transformer") 44

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("active learning") 21

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("GANs") AND ("generative") 30

("depositional elements" OR "architectural elements" OR "lobes" OR "meandering channels" OR
"facies turbidites") AND ("geology") AND ("seismic") AND ("diffusion models") 39

Classification; Segmentation; Seismic Facies; Neural networks; Machine Learning 80

Total entries 1034

Total unique entries 898

Table 1 as well as the number of papers found by them.363

These searches resulted in 858 unique entries, which were364

subsequently entered into the Rayyan software (Ouzzani365

et al., 2016), a collaborative tool for managing and accel-366

erating systematic reviews.367

3.2. Title and abstract screening368

Title and abstract screening is an important stage in369

systematic reviews and research synthesis. This procedure370

entails evaluating the significance of possibly relevant re-371

search based on their titles and abstracts. It is an efficient372

method for identifying works that are likely to match the373

survey’s scope while rejecting unrelated studies.374

Given the papers found in the previous stage, the current375

step comprises screening through them. We screened the376

title and abstracts of all the 898 unique entries, providing377

a flag (“included”, “maybe”, or “excluded”) signaling indi-378

vidual concerns regarding whether the study should proceed379

to the next stage. We registered at least three reviewers per380

paper, with no maximum amount of opinions. If at least two381

reviewers excluded a paper, it was disregarded in the next382

stage. Otherwise, if at least two reviewers approved it, it was383

kept for the next stage. In the case of divergence, a second384

look at the paper was conducted, considering the opinion385

of the senior members involved in this step to resolve the386

conflicts. Some of the excluding reasons in this stage are387

stated below. At the end of this procedure, 51 papers were388

selected to advance in the process.389

Exclusion criteria. The following reasons were used390

to exclude papers: Methods using well log data, approaches391

not using seismic data, classical seismic attribute approaches,392

methods employing only shallow machine learning, sur-393

veys, introductory papers, dissertations, and out-of-scope394

publications.395
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3.3. Full-text screening396

Since only 51 studies were accepted in the previous397

phase, the full-text screening step was conducted parallel398

with data extraction. With that, we looked deeper into the399

eligible papers and better understood the approaches used400

for automated seismic segmentation. At this point, we also401

presented eligibility criteria for including and excluding402

papers during the full-text screening stage. Similar to the403

previous stage, at least two and at most three reviewers’404

opinions were considered for each study, and only those405

with two approvals were selected to compose this review.406

After trialing the publications by full-text screening, 25407

publications were selected, from which relevant metadata408

and key elements were extracted.409

Inclusion criteria. The following reasons were consid-410

ered for including papers: Innovative methods; exceptional411

results; channel identification; approaches that are not fully412

supervised (few-shot, semi/self-supervised); domain adap-413

tation; open code; and open data (including labels).414

Exclusion criteria. The following reasons were con-415

sidered to exclude papers: Training depending on borehole416

data; training depending on explicit geological condition-417

ing; fuzzy metrics; qualitative assessment only; and insuffi-418

cient validation/testing methods.419

3.4. Data Extraction420

This is the final stage of the systematic review, in which421

the obtained data must be organized and synthesized, and422

the insights brought by this study are presented. Here, we423

present an overview of the essential aspects, such as the424

main goals, the year of publication, the learning paradigm,425

the input format, the deep learning architectures and loss426

functions employed. The datasets are further examined in427

Section 4. The results, along with the approaches presented428

in each analyzed study, are presented in greater detail in429

Section 5. We organize these aspects to identify patterns and430

trends in the literature, as well as to highlight any knowledge431

gaps or contradictions.432

Year: The first organizational aspect is the year of433

publication. In the search methods, we filtered studies pub-434

lished since 2017. Table 2 displays the number of relevant435

publications available in the selected years, including those436

considered for full-text screening and those chosen for the437

final data analysis. While there is a slight increase of interest438

in this topic since 2018, differently from other deep learning439

Table 2
Count of related papers selected for full-text screening and
data analysis.

Year Full-text screening Data Analysis

2018 7 2
2019 11 6
2020 2 2
2021 11 4
2022 15 9
2023 4 2

Total 50 25

applications, the number of relevant papers has not grown440

substantially.441

Main goals: Secondly, the studies were organized ac-442

cording to their main goals. We initially split the publi-443

cations into four goals: (i) lithofacies segmentation; (ii)444

seismic facies segmentation, (iii) salt body identification;445

and (iv) synthetic data generation. These goals are broad and446

were selected based on the main application of each paper.447

Addressing lithofacies means that the labels specified448

for the dataset are connected to geological formations, with449

genetic mean and typically few vertical strata repetitions.450

This is a reflex of depositional control, such as sediment451

supply, eustasy, and basin flexure.452

When referring to seismic facies, we address facies that453

are directly connected to the reflectivity pattern and its454

geometry, which might appear in various depths of the data455

with multiple repetitions without implying physically con-456

nected geological strata. Since the segmentation of facies is457

a dense prediction task, it has usually been dealt with fully-458

convolutional networks (Alaudah et al., 2019; Su-Mei et al.,459

2022; Abid et al., 2022). Despite that, it sometimes includes460

approaches based on the classification of each pixel through461

the employment of sliding windows techniques (Guazzelli462

et al., 2020).463

The salt body identification goal refers to delimiting salt464

structures in a binary manner. These structures are usually465

well-marked, but their correct delimitation is crucial for466

the comprehension of reservoir disposal and for obtaining467

accurate velocity models. The usual approaches consist468

of performing segmentation or classification of patches of469

salt (Waldeland and Solberg, 2017; Shi et al., 2019).470

Finally, the generation of synthetic data (e.g. channel471

structure simulation) is important since it makes more472

feasible controlled testing of algorithms and simulations for473
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Table 3
Count of chosen articles’ major goals and their references.

Main Goal References Count

Facies Segmentation Chevitarese et al. (2018), Silva et al. (2019), Alaudah et al. (2019), 21
Zhang et al. (2019), Wang et al. (2019), Guazzelli et al. (2020),
Liu et al. (2020a), Li et al. (2020), Wang and Chen (2021),
Zhang et al. (2021), Trinidad et al. (2022), Abid et al. (2022),
Chen et al. (2022b), Tolstaya and Egorov (2022), Su-Mei et al. (2022),
Wang et al. (2021), Li et al. (2022), Nasim et al. (2022),
Monteiro et al. (2022), Wang et al. (2023), Li et al. (2023)

Salt body Identification Waldeland and Solberg (2017), Mukhopadhyay and Mallick (2019), Shi et al. (2019) 3

Synthetic Data Generation Chen et al. (2022a) 1

Table 4
Count of adopted learning paradigms per year.

Year Learning Paradigm References Count

2018 Supervised Waldeland et al. (2018), Chevitarese et al. (2018) 2

2019 Supervised
Mukhopadhyay and Mallick (2019), Silva et al. (2019), 5
Alaudah et al. (2019), Shi et al. (2019), Wang et al. (2019)

2020
Supervised Zhang et al. (2019), Guazzelli et al. (2020) 2
Supervised and semi-supervised Liu et al. (2020a) 1

2021
Supervised Trinidad et al. (2022) 1
Supervised (Few/some-shot) Zhang et al. (2021), Wang and Chen (2021), Li et al. (2020) 3

2022

Supervised Abid et al. (2022), Tolstaya and Egorov (2022), Wang et al. (2021) 3
Semi-supervised Su-Mei et al. (2022), Li et al. (2022) 2
Self-supervised (Few/some-shot) Monteiro et al. (2022) 1
Unsupervised Chen et al. (2022b), Nasim et al. (2022), Chen et al. (2022a) 3

2023
Semi-supervised Wang et al. (2023) 1
Unsupervised Li et al. (2023) 1

reservoir modeling and characterization (Lee and Mukerji).474

This was a secondary goal of this search, and only one paper475

was selected for the final analysis.476

Table 3 displays the number of papers according to their477

goals. Due to the scope of this review, there are many more478

papers regarding the segmentation of facies (21), compared479

to the other two goals.480

Learning Paradigm: We also identified the machine481

learning paradigms used in the papers. The paradigms were482

divided into three primary categories: supervised, semi-483

supervised, and unsupervised. We highlight specific cases,484

such as the few-shot regime and self-supervised learning.485

This was an attempt to preserve the typical structure and add486

specificity regarding the approaches proposed in each work.487

Table 4 shows the frequency of papers that use specific488

learning paradigms according to the publication year. Note489

that the supervised approach is the most common.490

Table 4 also shows that there has been a growing491

interest in alternative approaches that do not solely rely on492

fully-supervised methodologies. Notice a growing number493

of publications adopting semi-supervised and unsupervised494

techniques, as well as applications employing few-shot495

and self-supervised methods. This trend is also evident in496

the literature, as handling unlabeled data is a significant497

challenge in various deep learning fields (Chen et al., 2020b;498

Balestriero et al., 2023). These approaches are particu-499

larly important for seismic interpretation problems because500

manually generated labels by experts are costly and time-501

consuming (Waldeland et al., 2018; Liu et al., 2020a).502

Input format: Another relevant aspect that varies503

greatly among the studies is the format of the data inputted504

into the network. Overall, seismic data can be viewed505

as a 3D volume describing the amplitude of the wave506

signal across a 3D topology (latitude, longitude, and depth).507
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Table 5
Count of input styles adopted per year.

Year Input Style References Count

2018
2D patches Chevitarese et al. (2018) 1
3D patches Waldeland et al. (2018) 1

2019
2D patches Mukhopadhyay and Mallick (2019), Silva et al. (2019), Alaudah et al. (2019) 3
2D slices Alaudah et al. (2019), Wang et al. (2019) 2
3D patches Shi et al. (2019) 1

2020
2D slices Guazzelli et al. (2020) 1
2D patches Zhang et al. (2019) 1
3D patches Liu et al. (2020a) 1

2021
2D patches Wang and Chen (2021) 1
2D slices Li et al. (2020); Trinidad et al. (2022) 2
3D patches Zhang et al. (2021) 1

2022
2D patches Abid et al. (2022), Nasim et al. (2022), Chen et al. (2022a) 3
2D slices Chen et al. (2022b), Tolstaya and Egorov (2022), Wang et al. (2021), Li et al. (2022), 5

Monteiro et al. (2022)
3D patches Su-Mei et al. (2022) 1

2023
2D slices Wang et al. (2023) 1
3D patches Li et al. (2023) 1

Nevertheless, due to its large size, which easily surpasses508

hundreds of gigabytes, this volume is typically divided into509

smaller segments when employed as input for deep learning510

architectures. For the sake of comparison, the following511

input formats were found:512

• Small 2D patches: small crops that do not attempt513

to represent global context or structures of the data -514

usually crops smaller than 200×200 pixels;515

• Large 2D slices: large slices/sections (inlines or516

crosslines) that attempt to preserve global context517

information, such as depositional patterns and their518

geometry;519

• 3D sub-volumes: small volumes, usually as large520

as the computational power allows, which typically521

cannot preserve most of the global features; typically522

smaller than 128×128×128 pixels.523

As shown in Table 5, there is no clear preference for524

a given input format. Nevertheless, there has been some525

increase in the adoption of 2D slices over the years as an526

attempt to preserve contextual information from geological527

layers.528

Deep Learning Architectures: Researchers in deep529

learning applied to Geosciences, similar to their coun-530

terparts in other domains, have been conducting experi-531

ments with various deep learning architectures to address532

the challenges associated with seismic segmentation. Ta-533

ble 6 exhibits the frequency of each architecture used534

in the reviewed studies. Observe that numerous architec-535

tures were used, but there is a clear preference for the536

UNet (Ronneberger et al., 2015). Other networks that appear537

more frequently are the DeepLabV3+ (Chen et al., 2017b),538

ResNet (He et al., 2016), and the Danet-FCN (Chevitarese539

et al., 2018). A detailed description of the architectures can540

be found in Section 5.2.541

Loss functions: In deep learning architectures, a loss542

function, also known as cost or objective function, is a math-543

ematical function that quantifies the discrepancy between544

the predicted output of the model and the true (or desired)545

output. The purpose of the loss function is to measure546

the error incurred by the model during training and guide547

the gradient descent algorithm. The choice of an appro-548

priate loss function depends on the specific task and the549

problem’s nature. Therefore, different loss functions have550

been employed for seismic interpretation. By minimizing551

the loss function, the model learns to make more accurate552

predictions and to improve its performance on the given553

task.554

Table 7 shows the loss functions used in the studies555

considered in the literature review. Observe that the most556

frequently used are Cross-Entropy, Adversarial Loss, and557

Contrastive Loss, together with their variations, which are558
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Table 6
Count of adopted architectures and their references.

Backbone References Count

UNet Zhang et al. (2019), Shi et al. (2019), Wang et al. (2019), Li et al. (2020), 10
Wang and Chen (2021), Wang et al. (2021), Trinidad et al. (2022),
Tolstaya and Egorov (2022), Su-Mei et al. (2022), Wang et al. (2023)

DeepLabV3+ Zhang et al. (2021), Abid et al. (2022), Li et al. (2022) 3

Danet-FCN Chevitarese et al. (2018), Silva et al. (2019) 2

Resnet Monteiro et al. (2022), Li et al. (2023) 2

ConvNet Pixel Classification Waldeland et al. (2018), Guazzelli et al. (2020) 2

3D VGG Liu et al. (2020a) 1

Bayesian Neural Network Wang and Chen (2021) 1

Bayesian SegNet Mukhopadhyay and Mallick (2019) 1

EarthAdaptNet Nasim et al. (2022) 1

EfficientNet Tolstaya and Egorov (2022) 1

GAN Liu et al. (2020a) 1

Hrnetv2-W32 Chen et al. (2022b) 1

LSTM Trinidad et al. (2022) 1

SAGAN Chen et al. (2022a) 1

Segmentation ConvNet Alaudah et al. (2019) 1

SegNet Zhang et al. (2019) 1

Table 7
Count of adopted cost functions and their references.

Cost Function References Count

Cross-Entropy Waldeland et al. (2018), Shi et al. (2019), Li et al. (2020), 8
Wang and Chen (2021), Abid et al. (2022), Chen et al. (2022b),
Su-Mei et al. (2022), Monteiro et al. (2022)

Adversarial Loss Liu et al. (2020a), Chen et al. (2022a) 2

Contrastive Loss + Cluster Loss Li et al. (2023) 1

Contrastive Loss + Cross-Entropy Li et al. (2022) 1

CORAL Loss Nasim et al. (2022) 1

Cross-Entropy (supervised) and Wang et al. (2023) 1
Mean Squared Error (unsupervised)

Cross-Entropy + Dice + Total Tolstaya and Egorov (2022) 1
variation Loss

Dice Wang et al. (2021) 1

Focal loss Trinidad et al. (2022) 1

Not reported Chevitarese et al. (2018), Mukhopadhyay and Mallick (2019), 6
Wang et al. (2019), Silva et al. (2019), Alaudah et al. (2019),
Guazzelli et al. (2020)

further discussed in Section 5.3. It is worth noting that559

some loss functions are only listed once, indicating that560

they are used less frequently. Furthermore, six occurrences561

are labeled as “Not reported”, meaning that the study did562

not specify the loss function employed in the learning563

architecture.564

Evaluation metrics: Evaluation metrics in deep learn-565

ing are quantitative measures used to assess the models’566

performance. These metrics provide insights into how well567

a model performs on a given task, such as classification, re-568

gression, or segmentation. They help in comparing different569
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Table 8
Evaluation metrics with its appearance reference and its count.

Metric References Count

Pixel accuracy Chevitarese et al. (2018), Mukhopadhyay and Mallick (2019), 17
Alaudah et al. (2019),Shi et al. (2019), Zhang et al. (2019),
Guazzelli et al. (2020), Liu et al. (2020a), Wang and Chen (2021),
Trinidad et al. (2022) Abid et al. (2022), Chen et al. (2022b),
Tolstaya and Egorov (2022), Su-Mei et al. (2022), Wang et al. (2021),
Li et al. (2022), Nasim et al. (2022), Wang et al. (2023)

Mean intersection over Wang et al. (2019), Zhang et al. (2021), Wang and Chen (2021), 10
union Li et al. (2020), Abid et al. (2022), Chen et al. (2022b),

Tolstaya and Egorov (2022), Li et al. (2022), Nasim et al. (2022),
Monteiro et al. (2022)

Mean class accuracy Alaudah et al. (2019), Guazzelli et al. (2020), Trinidad et al. (2022), 9
Abid et al. (2022), Chen et al. (2022b), Tolstaya and Egorov (2022),
Li et al. (2022), Nasim et al. (2022), Wang et al. (2023)

Frequency weighted intersection Alaudah et al. (2019), Guazzelli et al. (2020), Trinidad et al. (2022), 7
over union Chen et al. (2022b), Tolstaya and Egorov (2022), Li et al. (2022),

Nasim et al. (2022)

Precision Shi et al. (2019), Wang and Chen (2021) 2

Recall Shi et al. (2019), Wang and Chen (2021) 2

F1 score (Dice) Shi et al. (2019), Wang et al. (2021) 2

Qualitative evaluation Waldeland et al. (2018), Li et al. (2023) 2

models, tuning hyperparameters, and determining whether a570

model meets the desired performance criteria.571

Note from Table 8 that numerous metrics have been572

utilized for evaluating seismic segmentation, with pixel573

accuracy being the most frequently employed. A detailed574

description of the metrics is presented in Section 5.4.575

4. Public Interpreted Datasets576

In this section, a brief description of the datasets en-577

countered during the review process is provided, focusing578

on the datasets for which the interpretation is available.579

Unlike computer vision and other fields of study, seis-580

mic segmentation lacks large-scale publicly available an-581

notated datasets suitable for training and evaluating deep582

learning models (Alaudah et al., 2019). Although there583

are many seismic volumes available for download through584

institutions, e.g., Open data from SegWiki2, New Zealand585

Petroleum & Minerals3 and TerraNubis4, these data are586

not annotated. Hence, there is no means to validate the587

2https://wiki.seg.org/wiki/Open_data
3https://www.nzpam.govt.nz/
4https://terranubis.com/

interpretation of these datasets, and as such, they are not the588

focus of this study.589

In an effort to offer openly labeled data for subsequent590

studies, Baroni et al. (2019), Alaudah et al. (2019), and Silva591

et al. (2019) released labeled datasets that are accessible592

for researchers to download and utilize under a Creative593

Commons Attribution license. Baroni et al. (2019) released594

an interpretation of the Penobscot 3D Dataset and discussed595

the labels and the use of these data. Both Alaudah et al.596

(2019) and Silva et al. (2019) released interpreted versions597

of the F3 Netherlands dataset. Baroni et al. (2019) and598

Silva et al. (2019) focused on discussing the data itself599

and the results of third-party studies using their dataset.600

As for Alaudah et al. (2019), one of their main goals601

was to establish a benchmark for future comparison of602

results, providing train and test splits, train set size, and603

metrics for comparison. In addition, a labeled version of604

the Parihaka Seismic Data was released (Inc), which was605

interpreted by a team from Chevron U.S.A. as the ground606

truth for the 2020 SEG Annual Meeting Machine Learning607

Interpretation Workshop.608

Table 9 summarizes open-interpreted datasets, including609

their size, number of classes, and citations in related works.610
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Table 9
Summary of the labeled datasets available, comparing their size, number of classes, and related citations.

Dataset Size (I,X,T) Classes Citations

F3 (Alaudah et al.) 601×901×255 6 LF Alaudah et al. (2019), Guazzelli et al. (2020), Trinidad et al.
(2022), Abid et al. (2022), Li et al. (2022), Chen et al. (2022b),
Tolstaya and Egorov (2022), Wang et al. (2021), Nasim et al.
(2022)

F3 (Silva et al.) 651×951×462 10 LF Silva et al. (2019), Wang and Chen (2021), Monteiro et al.
(2022), Wang et al. (2023)

F3 (Conoco-Phillips) 651×951×462 9 SF Zhang et al. (2019),Liu et al. (2020a), Zhang et al. (2021)

Parihaka (Chevron) 590x782x1006 6 LF Li et al. (2022), Tolstaya and Egorov (2022), Monteiro et al.
(2022), Su-Mei et al. (2022), Li et al. (2023)

Stanford VI-E (Lee and
Mukerji)

150×200×200 3 LF Guazzelli et al. (2020), Chen et al. (2022a)

Penobscot (Baroni et al.) 601×482×1501 7 LF Chevitarese et al. (2018), Nasim et al. (2022)

TGS Salt (TGS Salt
Identification Challenge)

22k*(101×101) 2 (S/NS) Mukhopadhyay and Mallick (2019)

I: Number of inlines; LF: Lithofacies; SF: Seismofacies; S/NS: Salt/Not salt; T: Number of timeslices; X: Number of crosslines.

Notice that the F3 Netherlands is the most explored among611

the ones with a public interpretation of facies. Its most-612

used interpreted version is the one proposed by Alaudah613

et al. (2019), followed by the ones proposed by Silva614

et al. (2019) and Conoco-Phillips (F3). Since it was made615

public in 2020 with a detailed geological segmentation for616

a competition, the Parihaka New Zealand (interpretation617

by Chevron (Inc)) has had increased usage. The Penobscot618

dataset (with Baroni et al. (2018) interpretation) and other619

Synthetic data are also sometimes used. The studies quoted620

in Table 9 are further discussed in Section 5.621

The main characteristics of the open-interpreted datasets622

with available descriptions are summarized as follows:623

Parihaka - Chevron (Inc) : the survey is offshore624

Taranaki, North Island, New Zealand. It is part of the625

Taranaki basin, which is made up mainly of terrestrial,626

marginal marine, and shallow marine sediments. It was627

made publicly available by New Zealand Petroleum and628

Minerals (NZPM), and the labels were provided by Chevron629

U.S.A. Inc. The 3D volume contains six classes: Base-630

ment/Other, Slope Mudstone A, Mass Transport Deposit,631

Slope Mudstone B, Slope Valley, and Submarine Canyon632

System. It has a 3D volume with 590 inlines, 782 crosslines,633

and 1006 timeslices.634

F3 Netherlands - Alaudah et al. (2019) : this model is635

based on the F3 Block, located on the North Sea continental636

shelf offshore of the Netherlands. This block is related to637

the Step Graben and the Dutch Central Graben, two tec-638

tonic structures marked by distinct lithostratigraphic units639

of varied thickness. Also, the area is deformed by strong640

halokinetic. The authors delimited seven lithostratigraphic641

units: the Upper North Sea group, the Middle North Sea642

group, the Lower North Sea group, the Chalk group, the643

Rijnland group, the Scruff group, and the Zechstein group.644

They made available a volume consisting of 700 inline645

sections and 1200 crossline sections and suggested one train646

and two test splits.647

F3 Netherlands - Silva et al. (2019) : this segmentation648

was also based on the F3 Block. For the purposes of machine649

learning, the authors reinterpreted 9 horizons separating the650

10 classes: North Sea Supergroup, Chalk Group, Rijnland651

Group, Schieland, Scruff and Niedersachsen Groups, Altena652

Group, Germanic Trias Group, Zechstein Group, Rotliegend653

Group, and Carboniferous Group. All inline and crosslines654

were interpreted, with 651 and 951 slices. Also, approx-655

imately 190,000 labeled patches were generated for the656

inlines and crosslines.657

Penobscot - Baroni et al. (2019) : this dataset was658

obtained in the Scotian shelf in Nova Scotia, Canada. The659

horizons were reinterpreted to generate 7 seismofacies char-660

acterized by their reflection patterns. For machine learning661

tasks, they opened 1083 labeled seismic lines and also the662

patches cropped from them.663

TGS Salt Identification Challenge (Kaggle): The664

dataset comprises randomly selected images from different665
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subsurface locations. These images have dimensions of666

101 x 101 pixels, with each pixel labeled as either salt or667

sediment. Furthermore, the depth of each imaged location668

is included alongside the seismic images. The objective669

of this competition was to identify and segment the areas670

containing salt within a non-salt background.671

5. Deep Learning for Seismic Segmentation672

As previously stated, conventional machine learning673

techniques are limited in their ability to process natural674

data in their raw form (LeCun et al., 2015). This would675

not, however, hinder the development of robust artificial676

intelligence methods, as deep learning algorithms have677

gained significant popularity over the last decades, mainly678

due to the availability of data as well as the advancements in679

computational power. These algorithms brought numerous680

advantages over traditional methods, such as the capacity681

to automatically learn features from data, reducing the need682

for manual feature engineering, and the ability to recognize683

patterns in large amounts of complex, unstructured data.684

The fundamental building block of a deep learning685

algorithms is the neural network. It consists of layers of686

interconnected nodes, each performing a mathematical op-687

eration on the input data. The nodes in each layer transform688

the data and pass them to the next layer. The initial layers689

usually capture simple features, while deeper layers learn690

increasingly complex and abstract representations (Zeiler691

and Fergus, 2014). These sets of layers allow the model692

to learn intricate patterns in the data, making it well-suited693

for complex tasks such as image classification, speech694

recognition and natural language processing.695

One particular area in which deep learning has man-696

aged to successfully discover intricate structures in high-697

dimensional data is computer vision (Krizhevsky et al.,698

2017; Farabet et al., 2013; Szegedy et al., 2015; Tompson699

et al., 2014). CNNs are a specialized type of deep neu-700

ral network that is commonly used in image and video701

processing applications. They are particularly well-suited702

for tasks involving visual recognition, classification, and703

segmentation, and have significantly improved the state of704

the art in computer vision.705

As the name states, CNNs are composed of convolu-706

tional layers, which perform a convolution operation by707

applying a set of learnable filters, also called kernels, to the708

input image. Each filter is trained to detect specific features,709

such as edges, corners, and textures. By sliding the filters710

Figure 2: Example of semantic segmentation applied to
inline 160 the F3 Netherlands dataset. White lines represent
manually interpreted horizons (ground truth), while colored
regions represent the class (label) assigned to each pixel
after the task of segmentation. This particular example
utilizes six interpreted horizons as its classes, but different
interpretations may include a different number of horizons.
Image source: (Silva et al., 2019)

over the input image in small steps, this process computes711

feature maps, which capture local patterns in the input.712

After each convolution operation, an activation function713

is element-wisely applied to the feature map to introduce714

non-linearity to the model. Then, the spatial dimensions715

of the feature maps are reduced through pooling layers716

or stride/padding strategies, decreasing the computational717

complexity and the risk of overfitting. These layers aggre-718

gate information from local regions, preserving the most719

important features while discarding less relevant details.720

What is left is a dense representation of the input in a721

low-dimension space. The final layers produce the model’s722

predictions, which can vary depending on the desired task.723

Since seismic volumes can be regarded as a type of724

image (Wang et al., 2019), CNNs have been applied to725

numerous geophysical applications to segment and classify726

facies in seismic cubes (Salles Civitarese et al., 2018; Zhao;727

Zhang et al., 2021). Differently from image classification,728

which assigns a single label to the entire image, image729

segmentation assigns labels to individual pixels or groups of730

pixels. This task automates the process of understanding the731

spatial distribution of objects and their boundaries within an732

image and it is therefore of great interest for the analysis of733

seismic facies. Figure 2 shows an example of segmentation734

applied to a slice of a seismic volume, where the label of735

each pixel is denoted by a different color.736

Dedicated approaches have emerged since traditional737

CNNs have shown promising results in semantic segmenta-738

tion tasks. In this section, we elucidate specialized methods739

developed for seismic segmentation, delve into their foun-740

dational components, critically assess their outcomes, and741
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highlight potential avenues for future research. More pre-742

cisely, first we delineate three distinct tasks associated with743

seismic segmentation in Section 5.1. Second, in Section 5.2,744

we describe the primary deep learning architectures serving745

as the backbone for these tasks. Third, in Section 5.3,746

we explore potential loss functions that have been and747

can be employed. Fourth, in Section 5.4, we provide a748

critical review on evaluation metrics. Fifth, Sections 5.5749

and 5.6 provide a comprehensive review of both supervised750

and unsupervised solutions, respectively. Finally, a concise751

summary of experimental results achieved in the literature752

is presented in Section 5.7.753

5.1. Seismic Segmentation Tasks754

The concept of “facies” is widely used in geology,755

particularly in sedimentology, in which the term refers to756

the sum of the characteristics of a sedimentary unit (Mid-757

dleton and Hampton, 1973). These characteristics include758

dimensions, sedimentary structures, grain sizes and types,759

color and biogenic content of the sedimentary rock. Not all760

aspects of the rock are necessarily indicated in the facies761

name, and in some circumstances, it may be important762

to emphasize different characteristics. The full range of763

the characteristics of a rock would be given in the facies764

description that form part of any study of sedimentary765

rocks (Nichols, 2009).766

The technique used to understand the subsurface via767

seismic data is named seismic facies analysis, which de-768

scribes and interprets the seismic reflection parameters,769

such as configuration, continuity, amplitude, and frequency,770

within rock layers (strata) of a depositional sequence (Vail,771

1987). Such analysis is of great significance in the oil772

and gas industry since it provides information regarding773

the possible distribution of rock layers and geobodies. In774

conjunction with additional information, it may indicate775

lithology and possible spots of hydrocarbon accumula-776

tion (Chevitarese et al., 2018). Interpretation of seismic777

facies is conducive to analyzing subsurface geologic envi-778

ronments and further predicting oil and gas reservoirs.779

As detailed in Section 3.4, this survey centers on tasks780

associated with identifying lithofacies, seismofacies and781

saline bodies. In computational terms, all these tasks can782

be formulated as image segmentation problems applied783

to seismic data (Wang et al., 2019), regardless of which784

specific task is being addressed. The difference is that,785

in general, the identification of salt bodies comprises a786

binary segmentation task, in which there are “salt” and787

“not salt”, whereas lithofacies and seismofacies commonly788

relate to multi-class segmentation problems, with the main789

difference stemming from the class labeling process.790

Lithofacies When the facies description is associated791

with the physical and chemical characteristics of a rock,792

such as grain size, mineralogy, porosity, and permeabil-793

ity, this is referred to as lithofacies. In other words, the794

lithofacies identification is based directly on geological795

observations (Nichols, 2009). In the realm of deep learning796

solutions, our literature review found that supervised learn-797

ing is the predominant approach for tackling this problem,798

as evidenced in several works (Chevitarese et al., 2018;799

Silva et al., 2019; Alaudah et al., 2019; Guazzelli et al.,800

2020; Wang and Chen, 2021; Trinidad et al., 2022; Abid801

et al., 2022; Tolstaya and Egorov, 2022; Wang et al.,802

2021). Nevertheless, unsupervised learning methods have803

also been explored (Chen et al., 2022b; Nasim et al., 2022),804

while semi-supervised approaches are discussed in (Su-805

Mei et al., 2022; Li et al., 2022; Monteiro et al., 2022;806

Wang et al., 2023). As for the publicly available datasets,807

F3 Netherlands, Penobscot, and Parihaka NZ all come808

equipped with lithofacies annotations. It is important to809

note that, in the case of F3 Netherlands, there are distinct810

public interpretations. For instance, Alaudah et al. (2019)811

defined six classes of lithofacies, whereas Silva et al. (2019)812

annotated ten classes.813

Seismofacies Seismofacies consist of seismic reflec-814

tions whose patterns, such as amplitude, frequency, and815

geometry, are different from those of adjacent groups (West816

et al., 2002). In summary, seismofacies analysis aims to817

interpret the depositional environment and facies distri-818

bution directly from seismic data (Dumay and Fournier,819

1988). From our literature review, we found that, although820

supervised techniques are the most common (Zhang et al.,821

2019; Wang et al., 2019; Li et al., 2020; Zhang et al., 2021),822

there were also papers addressing the problem with unsu-823

pervised (Li et al., 2023) and semi-supervised (Liu et al.,824

2020a) learning. The interpretation of the F3 Netherlands825

with 9 seismofacies provided by Conoco-Phillips Norge826

(F3) is the only one available.827

Salt bodies Besides lithofacies and seismofacies classi-828

fication, salt bodies identification constitutes another task of829

interest. Due to the low permeability associated with salt830

bodies, they may form seals for reservoirs. Furthermore,831

they have a relatively high sound velocity, which makes832
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them important to obtain an accurate velocity model in the833

vicinity of the salt bodies (Waldeland et al., 2018). This834

task can be modeled as a binary segmentation problem, and835

when the salt/not salt labels are available, then supervised836

learning naturally applies. Our survey found the following837

datasets related to this task: Barents Sea (Waldeland et al.,838

2018), SEAM Phase I (Mukhopadhyay and Mallick, 2019),839

and TGS Salt Identification Challenge (Shi et al., 2019). The840

first dataset is private; the second is available upon request;841

and the third can be publicly downloaded.842

5.2. Deep Learning Architectures843

Among the many architectures that have been proposed844

to tackle the image segmentation problem, the encoder-845

decoder is widely used deep learning architecture for pro-846

cessing unstructured data, such as images, videos, and natu-847

ral language texts. Its fundamental design pattern has proven848

effective in various deep learning tasks. The architecture849

consists of two primary components: an encoder and a850

decoder, each playing a distinct role in transforming the851

input data. The encoder resembles the convolutional layers852

of a CNN, in which the input image is processed to extract853

high-level features and is encoded into a lower-dimensional854

representation. What distinguishes this architecture from a855

traditional CNN is the fact that instead of being fed to a fully856

connected network, the output of the convolutional layers857

is then used as input to the next component, the decoder,858

which takes the encoded representation from the encoder859

and reconstruct the desired output by transforming the data860

into its original format, as illustrated Figure 2.861

Encoder-decoder networks are also commonly deployed862

to image generation tasks, in which the decoder is re-863

sponsible for upsampling the encoded data to generate a864

full-resolution output. The upsampling process typically865

involves the use of transposed convolutions or interpolation866

techniques. Throughout the remainder of this section, we867

will elucidate some of the frequently employed architectures868

that leverage the encoder-decoder design for seismic image869

segmentation tasks.870

UNet. Introduced in 2015 (Ronneberger et al., 2015),871

this architecture stands out as one of the most exten-872

sively employed in the semantic segmentation field (Ta-873

ble 6). Initially conceived for medical image segmentation,874

it swiftly found utility in various other domains (Iglovikov875

and Shvets, 2018; Yao et al., 2018; Çiçek et al., 2016; Kan-876

del et al., 2020; Nazem et al., 2021). The name UNet comes877

Figure 3: The UNet architecture (with a 572x572 2D input
image as an example). Blue rectangles represent multi-
channel feature maps, with the number of channels at the
top of each rectangle and the corresponding resolution at
the lower left corner. Arrows represent operations, and the
skip connections step is represented by the copy and crop
operation (gray arrows). Image source: (Ronneberger et al.,
2015)

from the fact that its shape resembles a “U”, as displayed878

in Figure 3, where the descending path (left side) is the879

encoder and the ascending path (right side) is the decoder.880

The network’s architecture comprises a connection between881

the contracting path that extracts contextual information882

and a symmetrical expanding path that facilitates accurate883

localization (Ronneberger et al., 2015). These connections884

allow the encoder to pass low-level features to the decoder885

since the downsampling operations result in the loss of886

information as the data gets encoded. More precisely, a887

“connection” between layers is represented by copying the888

activation map of one encoding layer, which results from889

a convolution followed by activation, and concatenating it890

to the corresponding layer on the decoder. Hence, the UNet891

is capable of preserving both low-level features from data892

as well as high-level ones, making it especially well suited893

for tasks that require fine details, such as biomedical and894

seismic image analysis.895

DeconvNet. This architecture was proposed in 2015 (Noh896

et al., 2015) and incorporates the convolutional layers of897

a popular CNN called VGG16 (Simonyan and Zisserman,898

2014) as its encoder. As illustrated in Figure 4, it comprises899

thirteen convolutional layers and five max-pooling layers,900

making it a robust yet simple network for feature extraction.901

In contrast with the VGG16, however, the DeconvNet902

drops the fully connected layers and replaces them with903

a mirrored version of the convolutional layers to form its904

decoder, where the convolutions become deconvolutions905

and perform upsampling instead of downsampling. Because906
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Figure 4: Architecture of the DeconvNet. The convolutional network based on the VGG16 is followed by a multi-layer
deconvolution network to generate a segmentation map of the input image. Image source: (Noh et al., 2015)

Figure 5: The SegNet architecture. There are no fully connected layers, only convolutional ones. The encoder (left half)
generates pool indices, which are then fed to the decoder (right half) to produce sparse feature maps. Image source:
(Badrinarayanan et al., 2017)

of this robustness, DeconvNet is particularly useful for907

tasks where precise pixel-level segmentation is crucial,908

such as seismic and medical image analysis. In comparison909

with UNet’s original applicability on image segmentation910

tasks, DeconvNet was primarily designed to tackle image911

reconstruction and image generation problems. Due to the912

lack of shortcut connections in its architecture, DeconvNet913

models usually struggle to preserve spatial information914

during the upsampling in the deconvolution size. As a result,915

DeconvNet is easier to train at the cost of being less accurate916

in segmenting small objects than UNet-based models.917

SegNet. Proposed in 2017 (Badrinarayanan et al., 2017)918

and shown in Figure 5, the SegNet architecture focuses on919

accurate pixel-wise segmentation. However, SegNet uses a920

specific approach to manage the complexity of the model921

and to make it more efficient. Similar to the DeconvNet,922

it relies on the design of the convolutional layers of the923

VGG16 for its encoder, but with some key differences.924

In contrast to conventional max pooling, SegNet not only925

retains the maximum values during the pooling operation926

but also stores their corresponding indices, preserving the927

spatial locations of the maximum activations. The indices928

are then used later in the decoder for upsampling. While929

this approach has the same goal as the UNet, which is to930

prevent the loss of information in the pooling layers, SegNet931

manages to be more efficient by choosing not to store932

entire activation maps at each convolutional layer, enabling933

accurate segmentation while using less memory and fewer934

parameters compared to other architectures.935

DeepLab. This term refers to a series of architectures936

that employ spatial pyramid pooling (ASPP) (Liang-Chieh937

et al., 2015; Chen et al., 2017a,b, 2018) developed by938

researchers at Google, being initially introduced in 2014939

with DeepLabV1 and having its most recent version with940

DeepLabV3+. This network currently holds state-of-the-art941

performance in several semantic segmentation tasks, includ-942

ing seismic image segmentation (Du et al., 2021; Polat,943

2022). The original architecture introduced the concept of944

dilated convolutions to capture multi-scale contextual in-945

formation. These convolutions have a configurable dilation946

rate that allows the network to have a larger receptive field947

without increasing the number of parameters. As shown in948

Figure 6, the three versions use ASPP modules, which use949

parallel dilated convolutional layers with different dilation950

rates. This captures context at various scales and improves951

segmentation performance. Future versions of this architec-952

ture would aim to improve the model’s efficiency and ability953
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Figure 6: Overview of DeepLabv1 network architecture (left), implementation of guided filter layer over DeepLabv2 (middle),
and illustration of DUpsampling module employed after the last layer of DeepLabv3 (right). Image source: (Sediqi and Lee,
2021).

to capture features at different levels of abstraction, thus954

yielding better segmentation accuracy.955

5.3. Loss Functions956

As detailed in Section 3.4, when addressing Machine957

Learning or Deep Learning challenges, the primary goal is958

to optimize a model, typically achieved by minimizing a loss959

function. Table 7 provides an overview of the cost functions960

commonly employed in the literature under review. Note-961

worthy selections include Cross-Entropy, Adversarial Loss,962

and Contrastive Loss, each accompanied by their respective963

variations and adaptations.964

Cross-Entropy Loss (CEL). The cross-entropy cost965

function is widely employed as a primary error metric in966

many deep learning applications, including seismic segmen-967

tation tasks. The cross-entropy formulation can be repre-968

sented as969

CEL(𝑝, 𝑡) = −
𝑛
∑

𝑖=1
𝑡𝑖 log(𝑝𝑖), (1)

where 𝑛 represents the number of classes 𝑡 and 𝑝 are970

one-dimensional vectors. 𝑡𝑖 ∈ {0, 1} holds the true target971

label and 𝑝𝑖 represents the probability of the predicted972

class. Note that this function gauges the probability of the973

predicted class against the intended class output. It penalizes974

deviations based on their magnitude from the expected975

outcome. With a logarithmic nature, substantial disparities976

yield higher penalties, while minor differences result in977

lesser penalties.978

The cross-entropy loss offers a notable advantage due979

to its straightforward implementation and optimization. Its980

smooth and convex shape also supports the efficient con-981

vergence of gradient-based optimization methods to reach982

the global minimum. Conversely, a significant drawback of983

this loss function is its sensitivity to outliers and imbalanced984

data. In cases where one class vastly outnumbers the others985

within the dataset, this loss function may prioritize the986

dominant class, resulting in sub-optimal performance for the987

minority classes. To tackle this challenge, various adapta-988

tions of the cross-entropy loss have been introduced, such as989

weighted cross-entropy, focal loss, and class-balanced loss.990

Adversarial Loss (ADV). The adversarial cost function991

arises within the framework of Generative Adversarial Net-992

works (GANs), as introduced by Goodfellow et al. (2014).993

In summary, GANs comprise a generative model denoted as994

𝐺 and a discriminative model referred to as 𝐷, which are995

trained in cooperation. The generator aims to minimize the996

penalty whereas the discriminator endeavors to maximize997

it. This oppositional dynamic between the two models gives998

rise to the term “adversarial”. It can be defined as999

ADV(𝑝, 𝑡) =
𝑛
∑

𝑖=1
𝔼𝑡[log𝐷(𝑡𝑖)]+𝔼𝑝[log

(

1 −𝐷(𝐺(𝑝𝑖))
)

], (2)

where 𝔼𝑡 is the expected value over all real data instances,1000

𝐷(𝑡) is the discriminator’s estimate of the probability that1001

real data instance 𝑥 is real, 𝔼𝑝 is the expected value over1002

all generated synthetic instances, 𝐺(𝑝) is the generator’s1003
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output for a given noise 𝑝, and 𝐷(𝐺(𝑝)) is the discriminator’s1004

estimate of the probability that a counterfeit instance is real.1005

Adversarial training and GANs are both important for1006

generating realistic images. In the field of seismic seg-1007

mentation, some researchers have employed this method1008

successfully (Liu et al., 2020a), where a GAN framework is1009

used to train a generator network to create synthetic seismic1010

data and a discriminator network to distinguish between real1011

and synthetic data. This adversarial training process helps1012

refining the synthetic data generation over time, making1013

it increasingly indistinguishable from real seismic data.1014

The synthetic data can then be used to augment training1015

datasets, which can improve the performance and robustness1016

of seismic segmentation models.1017

Contrastive Loss (CON). Contrastive loss is a type of1018

loss function that is used to train machine learning models1019

to learn representations of data where similar examples1020

are close together and dissimilar examples are far apart.1021

Basically, it quantifies the vector’s separation from another1022

sample of the same category and juxtaposes it with the sep-1023

aration from negative instances. This function ensures that1024

the penalty remains minimal when positive examples result1025

in more comparable (close) representations, while negative1026

instances yield less comparable (distant) ones. Typically,1027

cosine distances are employed to gauge these similarities,1028

subsequently serving as prediction probabilities. For a pair1029

of samples (𝑝1, 𝑝2), the contrastive loss is defined as1030

CON(𝑝1, 𝑝2, 𝑡) =

𝑡𝐸(𝑝1, 𝑝2)2 + (1 − 𝑡) max(𝛼 − 𝐸(𝑝1, 𝑝2), 0),
(3)

where 𝑡 = 0 indicates that samples are similar by annulling1031

the Euclidean distance term 𝐸(𝑝1, 𝑝2) = ||𝑝1 − 𝑝2||2 on1032

the left side of the equation. Differently, 𝑡 = 1 signalizes1033

that samples are dissimilar as it minimizes the second term1034

max(𝛼−𝐸(𝑝1, 𝑝2), 0), which is equivalent to maximizing the1035

Euclidean distance until some threshold 𝛼.1036

Some researchers have employed the contrastive loss in1037

pre-training methodologies tailored to 3D seismic data. In1038

this approach, slices within the same data block are consid-1039

ered positive samples, while those originating from different1040

blocks are treated as negatives. In the CONSS method1041

proposed by Li et al. (2022), for instance, the contrastive1042

loss optimization encourages the neural network to reduce1043

intra-class distances while increasing inter-class separation.1044

It leads to the creation of sharper decision boundaries that1045

ultimately enhance classification accuracy and robustness.1046

Boundary Awareness. Regardless of the recent ap-1047

proaches designed to tackle semantic segmentation of seis-1048

mic data, the vast majority have failed to address the lack1049

of intricate boundary details along the outputs produced1050

by neural network models. This issue is commonly found1051

in architectures employing downsampling operations to en-1052

compass broader receptive fields.1053

Few approaches have been proposed to tackle boundary1054

misclassification. For instance, Bertasius et al. (2015) and1055

Takikawa et al. (2019) introduced boundary-aware informa-1056

tion flow and multitask training techniques. Although these1057

operations aid in encoding contextual information around1058

each pixel, they tend to propagate feature information across1059

the image, resulting in feature smoothing along object1060

boundaries (Wang et al., 2022). In a similar fashion, Yuan1061

et al. (2020) developed a technique to model the relationship1062

between boundary and interior pixels. However, this method1063

often shows significant errors, especially for small and1064

slender objects, particularly at object boundaries.1065

Inspired by the aforementioned drawbacks, Wang et al.1066

(2022) introduced a novel approach known as Active1067

Boundary Loss (ABL), which progressively attempts to1068

align predicted boundaries with ground-truth boundaries1069

during training. In contrast to the cross-entropy loss, which1070

solely supervises pixel-level classification, ABL focuses on1071

the correspondence between predicted and actual bound-1072

aries. This approach prompts the network to focus more on1073

boundary pixels, consequently enhancing segmentation out-1074

comes. Unfortunately, ABL is computationally expensive to1075

train as it requires the calculation of the boundary gradient1076

for each training image. In addition, it is also sensitive to1077

the hyperparameters, such as the learning rate and ABL’s1078

weight factor in the overall loss function.1079

5.4. Evaluation Metrics1080

As stated in Section 3.4, a variety of evaluation metrics1081

have been used on the seismic segmentation task, but only1082

four of them have been repeatedly employed. According1083

to Table 8, pixel accuracy (PA), intersection over union1084

(IoU), mean class accuracy (MCA), frequency weighted1085

intersection over union (FWIoU) are present in a large num-1086

ber of papers. For this reason, we channel our exploration1087

efforts toward these four evaluation metrics in this survey.1088

Please refer to the survey conducted by Minaee et al. (2022)1089
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for detailed definitions of precision, recall and F1 score1090

(Dice) metrics in the context of image segmentation using1091

deep learning. For the following definitions, consider the1092

following notation: 𝑇𝑃 is the number of true positives; 𝑇𝑁1093

is the number of true negatives; 𝐹𝑃 is the number of false1094

positives; 𝐹𝑁 is the number of false negatives; 𝑛 is the1095

number of pixels in the image; 𝑚 is the number of classes.1096

While in the multi-class context, positive elements refer to1097

elements of the class being considered, whereas negative1098

elements are the ones belonging to all other classes.1099

Pixel Accuracy. PA is a simple evaluation metric that1100

measures the percentage of correctly classified pixels in an1101

image. It computes the ratio of correctly classified pixels to1102

the total number of pixels in an image. While it provides1103

a primary measure of exactness, it does not consider the1104

specific predicted classes and may not be suitable for im-1105

balanced datasets. It is defined as1106

𝑃𝐴 = (𝑇𝑃 + 𝑇𝑁)∕𝑛. (4)

Mean Class Accuracy. MCA is a metric that computes1107

the average accuracy for each class in a dataset. It computes1108

the percentage of correctly classified pixels for each class1109

and then takes the average across all classes. MCA provides1110

a more fine-grained evaluation compared to PA by consid-1111

ering individual class performances, which can be helpful1112

in scenarios where certain classes are more important than1113

others. It is defined as1114

𝑀𝐶𝐴 = 1
𝑚

𝑚
∑

𝑖=1
𝑇𝑃 𝑖∕(𝑇𝑃 𝑖 + 𝐹𝑁 𝑖). (5)

Mean Intersection over Union. The mIoU is the av-1115

erage of the Intersection over Union (IoU) for all classes1116

and provides a comprehensive measure of the overall seg-1117

mentation performance. It measures the overlap between1118

the predicted and ground truth segmentation masks for each1119

class and is defined as1120

𝑚𝐼𝑜𝑈 = 1
𝑚

𝑚
∑

𝑖=1
𝑇𝑃 𝑖∕(𝑇𝑃 𝑖 + 𝐹𝑃 𝑖 + 𝐹𝑁 𝑖). (6)

Frequency Weighted Intersection over Union. The1121

FWIoU also measures the overlap between the predicted1122

and ground truth segmentation masks for each class and1123

calculates the intersection ratio to the union of the predicted1124

and ground truth regions. 𝐹𝑊 𝐼𝑜𝑈 extends this concept by1125

weighting the 𝐼𝑜𝑈 score of each class by the frequency of1126

that class in the dataset. It gives more importance to more1127

prevalent classes, allowing a more representative evaluation1128

of the overall segmentation performance. It is defined as1129

𝐹𝑊 𝐼𝑜𝑈 =
𝑚
∑

𝑖=1

𝑛𝑖
𝑛
𝑇𝑃 𝑖∕(𝑇𝑃 𝑖 + 𝐹𝑃 𝑖 + 𝐹𝑁 𝑖). (7)

Boundary F1 Score. The BF1 metric (Csurka et al.,1130

2013) was not found in the reviewed papers related to1131

seismic data segmentation tasks. Nevertheless, this metric1132

holds promise for application within this specific problem1133

domain. The BF1 metric quantifies the proximity between1134

the predicted boundary of an object and the corresponding1135

ground-truth boundary. Its potential utility extends to the1136

segmentation of seismic data, primarily due to its ability1137

to enhance the precision of boundary delimitation between1138

distinct classes.1139

The BF1 is based on the F1 measure and extends the1140

Berkeley contour matching score (Martin et al., 2004),1141

which computes the F1-measure from precision and recall1142

values with a distance error tolerance of 𝜃. Let 𝐵𝑐𝑔𝑡 be the1143

boundary map of the binary ground truth segmentation map1144

for class c, 𝑆𝑐𝑔𝑡 , with 𝑆𝑐𝑔𝑡(𝑧) = [[𝑆𝑔𝑡(𝑧) == 𝑐]] and1145

[[z]] is the Iverson bracket notation, i.e. [[z]]=1 if z=true1146

and 0, otherwise. Similarly, 𝐵𝑐𝑝𝑠 is the contour map for the1147

binary predicted segmentation map 𝑆𝑐𝑝𝑠. If 𝜃 is the distance1148

error tolerance, the adapted precision (𝑃 𝑐) and recall (𝑅𝑐)1149

for each class are, respectively,1150

𝑃 𝑐 = 1
|𝐵𝑝𝑠|

∑

𝑧∈𝐵𝑐𝑝𝑠
[[𝑑(𝑧, 𝐵𝑐𝑔𝑡) < 𝜃]] (8)

and1151

𝑅𝑐 = 1
|𝐵𝑔𝑡|

∑

𝑧∈𝐵𝑐𝑔𝑡
[[𝑑(𝑧, 𝐵𝑐𝑝𝑠) < 𝜃]], (9)

where d is the Euclidean distance. Given that, the 𝐹 𝑐
1 is1152

defined as1153

𝐹 𝑐
1 = 2𝑃 𝑐𝑅𝑐∕(𝑃 𝑐 + 𝑅𝑐). (10)

The 𝐹 𝑐
1 scores of all classes are then averaged to generate the1154

F1 score per image (𝐵𝐹1), and the result in the full dataset1155

is computed by averaging the 𝐵𝐹1 of all images.1156

Multi-metric approach. In many segmentation tasks,1157

class imbalance is common, where some classes have sig-1158

nificantly more or fewer pixels than others. Using metrics1159
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such as 𝐹𝑊 𝐼𝑜𝑈 and 𝑚𝐼𝑜𝑈 that account for class fre-1160

quencies helps mitigate the impact of imbalanced datasets1161

and provides a fair evaluation of model performance across1162

all classes. Moreover, for those specifically interested in1163

models delivering precise delineation of class borders, met-1164

rics such as 𝐵𝐹1 become crucial. Therefore, an optimal1165

evaluation approach involves simultaneously considering1166

multiple metrics. The integration of these metrics facili-1167

tates a comprehensive evaluation of image segmentation1168

models, addressing various facets including accuracy, class-1169

specific performance, class frequencies, border delineation,1170

and overall segmentation quality. Essentially, a multi-metric1171

approach enhances our understanding of the model’s perfor-1172

mance and provides guidance for further improvements.1173

5.5. Supervised Approaches1174

Supervised learning is a machine learning paradigm1175

where an algorithm learns from labeled training data to1176

make predictions. It involves learning a mapping from input1177

data to output labels or values based on a set of input-output1178

pairs. In the case of image segmentation, an input-output1179

pair consists of a standard RGB image and a mask with the1180

same resolution, where each pixel is labeled according to its1181

ground truth. The same logic can be applied to the domain of1182

seismic volumes, in which inline and crossline sections from1183

the cube form the input images, and each one has a manually1184

annotated mask delimiting the horizons (or classes). Despite1185

the difficulty inherent in labeling such data, interpretations1186

of public datasets have been made available in recent years,1187

allowing researchers to tackle fully supervised methods.1188

Amongst these interpretations, some of the most popular1189

ones, as shown in Table 9, are those of Alaudah et al. (2019),1190

Silva et al. (2019) for the F3 Netherlands and Chevron1191

U.S.A. Inc. (Inc) for the Parihaka dataset.1192

Since CNNs have achieved state-of-the-art results in1193

many computer vision tasks, a natural initial approach1194

for the task of facies segmentation involves the use of1195

such techniques. One of the earlier methods found in our1196

investigation employed CNNs for automated seismic in-1197

terpretation (Waldeland et al., 2018). More precisely, the1198

authors proposed a binary classification method to identify1199

salt bodies, where the network would use an encoder to1200

learn a dense representation and then perform a pixel-wise1201

classification as salt or non-salt. Although this approach1202

achieved good results, they highlighted that CNNs require1203

large amounts of training data and must be carefully de-1204

signed to perform well. Regardless, their work showed that1205

deep learning could be successfully applied to seismic data,1206

and thus it laid the foundation for future works to explore1207

new architectures and improve the results.1208

Numerous well-established deep learning architectures,1209

originally designed for standard supervised image classifi-1210

cation tasks, have been employed for seismic segmentation,1211

such as AlexNet (Krizhevsky et al., 2012b), VGG (Si-1212

monyan and Zisserman, 2014), DeconvNet (Noh et al.,1213

2015), and ResNet (He et al., 2016), which have achieved1214

excellent results (Zheng et al., 2019; Dramsch and Lüthje,1215

2018; Waldeland and Solberg, 2017; Sun et al., 2017).1216

However, seismic facies are very different from traditional1217

images, motivating many works to design architectures1218

specifically for this domain. For instance, Chevitarese et al.1219

(2018) proposed modifications of the network topology to1220

reduce the number of parameters and operations while still1221

improving the accuracy of test data. These modifications1222

were based on different ideas from previous methods, which1223

include small convolutional filters, similar to those on VGG,1224

residual units, as in ResNet, as well as utilizing different re-1225

ceptive fields and regularization methods. After performing1226

experiments with all of these variations, their best model1227

was entitled Danet-3, and it would then achieve state-of-1228

the-art performance in terms of published results for seismic1229

facies classification on the Penobscot dataset.1230

Despite the great success of CNNs in image classifica-1231

tion, it was not well established up to this point that end-to-1232

end convolutional networks could perform well in semantic1233

labeling tasks such as facies classification. One major prob-1234

lem in CNNs is that they have a trade-off between classi-1235

fication and localization accuracy, which was evidenced by1236

Girshick et al. (2014). Their work highlighted the need for1237

region-based approaches to improve both localization and1238

classification accuracy. Furthermore, deeper networks with1239

many convolution and pooling layers have proven to be the1240

most successful models for image classification, but they1241

have a high spatial invariance due to their large receptive1242

field. In other words, the deeper we go into a network, the1243

more we lose the location information of objects within the1244

image, which is crucial for tasks that require high spatial1245

detail such as seismic segmentation.1246

To overcome the aforementioned limitation, deconvolu-1247

tion networks have become an alternative over traditional1248
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CNNs with fully-connected layers. As described in Sec-1249

tion 5.2, these networks use a symmetric encoder-decoder1250

architecture composed of convolution and pooling layers1251

in the encoder, and deconvolution and unpooling layers in1252

the decoder. Such architectures can achieve finer and more1253

accurate results than those of a fully-connected network. As1254

an example, Alaudah et al., the same authors of a publicly1255

available interpretation of the F3 Netherlands block, utilized1256

two baseline deconvolution networks to evaluate the perfor-1257

mance of such architectures on this dataset (Alaudah et al.,1258

2019). By separately training the models with patches and1259

sections of the cube, experiments showed that, indeed, these1260

architectures could better incorporate spatial and contextual1261

information, since section-based models obtained better1262

results than patch-based ones. This is a consequence of the1263

fact that patches are acquired at different depths in the data,1264

and some classes typically exist in specific depths, while1265

sections span across all depths.1266

As previously mentioned, a big limitation of deep learn-1267

ing and CNN techniques is the requirement for large, high-1268

quality annotated datasets to perform well. Hence, coming1269

up with a strategy to utilize the few annotated samples1270

more efficiently became as important as developing robust1271

networks for seismic segmentation. UNet (Ronneberger1272

et al., 2015) was one of the first proposed encoder-decoder1273

architectures to tackle this limitation. Originally targeting1274

biomedical images, it is one of the most popular networks1275

for the task of image segmentation in many fields (Falk1276

et al., 2019; Zhang et al., 2018; Pan et al., 2020; Zhao1277

et al., 2019). It relies on the strong use of data augmentation1278

techniques such as elastic deformations to the training1279

images, which is a very common variation in biological1280

tissue and even in rock formations, thus creating a model1281

that is invariant to such deformations. Moreover, UNet also1282

addresses the problem of separating touching objects of the1283

same class, e.g. by applying a weighted loss that assigns1284

higher values to borders of such values. This technique,1285

while originally envisioning cells that are very close to1286

each other in medical images, is also useful when it comes1287

to segmenting geological facies, since delimiting horizons1288

with fine detail in seismic volumes remains a challenge even1289

for experts (Zhao et al., 2015). Because of these innovations,1290

a series of works have employed UNet for geological facies1291

segmentation tasks with successful results, ranging from the1292

detection of salt-bodies (Shi et al., 2019) to complex tasks1293

such as identifying seismofacies (Wang et al., 2019; Li et al.,1294

2020) and lithofacies (Wang and Chen, 2021; Trinidad et al.,1295

2022).1296

After establishing UNet as a robust baseline architec-1297

ture for image segmentation, subsequent efforts focused on1298

enhancing its classification accuracy. One mechanism that1299

grew in popularity in recent years and has significantly1300

improved the performance of deep learning models is called1301

attention (Niu et al., 2021). This mechanism was initially1302

inspired by how humans pay attention to different aspects of1303

information when processing data, and it allows networks1304

to focus on relevant information adaptively. It works by1305

assigning different attention scores to different parts of the1306

input data, such as words from a sentence or regions of1307

an image, and higher scores dictate the level of importance1308

of each part according to the task that is being performed.1309

Furthermore, another popular mechanism in deep learning1310

is the use of dilated convolutions (Contreras et al., 2021).1311

As briefly mentioned previously, the context information in1312

networks such as UNet is acquired by the pooling layers1313

to expand the receptive field, which leads to the global1314

information and resolution being gradually lost through1315

the layers of the network. To address this issue, dilated1316

convolutions can expand the receptive field without losing1317

global information, which is achieved by increasing the1318

space between the kernel values to expand the receptive1319

field without increasing too much computation and loss1320

of context information. Both the attention mechanism and1321

dilated convolutions are desirable when dealing with large,1322

complex seismic data, and were successfully incorporated1323

into UNet to achieve better performance (Wang et al., 2019;1324

Li et al., 2020; Trinidad et al., 2022).1325

Our literature review revealed that recent works have1326

predominantly focused on modifying well-known archi-1327

tectures rather than adhering to baseline models. Pre-1328

viously, we showed an example of how networks like1329

UNet could be modified by introducing more recent and1330

complex deep learning techniques such as attention and1331

dilated convolutions, but other architectures, such as Seg-1332

Net and DeepLabV3+, have been explored and modi-1333

fied as well. Some of the modifications on these net-1334

works include: (i) varying the number of convolutional1335

layers (Chevitarese et al., 2018); (ii) experimenting with1336

different input sizes (Zhang et al., 2021); (iii) apply-1337

ing dropout and regularization (Chevitarese et al., 2018;1338

Mukhopadhyay and Mallick, 2019); and (iv) testing with1339

different loss functions (Trinidad et al., 2022). The former1340
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modifications (i and ii) aim to enhance efficiency, as there is1341

a trade-off between computational cost and accuracy when1342

handling extensive seismic data volumes, as noted by Zhang1343

et al. (2019). In contrast, the latter adjustments (iii and iv)1344

primarily address overfitting concerns while also effectively1345

capturing intricate details in the predicted segmentation.1346

Another strategy employed by the most recent works is1347

to combine two or more networks in an ensemble method.1348

As an example, Zhang et al. (2019) employed both SegNet1349

and UNet to tackle a segmentation task, as well as a binary1350

classification for each seismic facies. The final segmentation1351

was derived by merging the predicted facies based on the1352

results that achieved the highest accuracies. The work of1353

Abid et al. (2022) also combined two baseline networks,1354

DeepLabV3+ and SegNet-18, to create ensemble models.1355

The predicted scores for each class are averaged, and the1356

highest average probability is labeled for the class of each1357

pixel. Both of these works take inspiration from a classic1358

machine learning strategy, which consists of separately1359

training multiple weak classifiers and combining the results1360

to obtain a strong classifier. This strategy is often called1361

ensemble learning (Dietterich, 2000), and it has shown to be1362

a promising technique in deep learning as well, managing to1363

improve on the classification accuracy of standard baseline1364

models (Zhang et al., 2019; Abid et al., 2022).1365

It is important to note that most works using supervised1366

methods rely on data augmentation to compensate for the1367

lack of large, high-quality annotated data. This strategy,1368

however, has its limitations, and thus, many works have1369

turned their attention to unsupervised and semi-supervised1370

solutions, as detailed in the following section.1371

5.6. Strategies for Data-Scarce Scenarios1372

The performance of supervised learning approaches is1373

highly dependent on the amount and the quality of annotated1374

data (Jing and Tian, 2019). Consequently, reducing the costs1375

and time required for labeling large datasets is paramount,1376

especially in highly specialized fields (Balestriero et al.,1377

2023); unfortunately, this is not always achievable. There-1378

fore, there is a growing interest in adopting deep learning1379

models to scenarios where only few labeled data are avail-1380

able, relying on approaches such as few-shot, semi- and self-1381

supervised learning (Sun et al., 2019; Su et al., 2020; Xian1382

et al., 2020). In this section, we introduce several studies that1383

offer solutions for seismic facies segmentation when either1384

no annotated data or only a sparse amount is available.1385

Semi-supervised learning falls within the techniques1386

that leverage labeled and unlabeled data for training. Typ-1387

ically, it involves a small quantity of labeled data paired1388

with a substantial amount of unlabeled data. One prominent1389

approach in this domain are the Generative Adversarial1390

Networks, introduced by Goodfellow et al. (2016). These1391

models have gained widespread acknowledgement for their1392

versatility in generating realistic data. GANs differ from1393

traditional neural networks because they comprise two com-1394

peting entities: the generator and the discriminator. The1395

generator’s role is to create samples from an unknown1396

target probability distribution using random noise in a low-1397

dimensional space as input, while the discriminator func-1398

tions as a judge, distinguishing generated samples from real1399

ones.1400

In the context of seismic data analysis, a comparison1401

of supervised and semi-supervised learning was conducted1402

in a study by Liu et al. (2020a), who employed a super-1403

vised CNN and a semi-supervised GAN to tackle facies1404

classification using seismic reflection data derived from a1405

facies model. Two distinct deep learning frameworks were1406

proposed: a conventional CNN that relies on a substantial1407

quantity of labeled data and a semi-supervised GAN frame-1408

work that only requires limited data expanded from well-log1409

locations during the network training. The discriminator is1410

structured as an eight-class classifier: seven facies classes1411

plus a real or fake discriminant. During the inference phase,1412

the generator is no longer used, and the discriminator pro-1413

duces the final predictions. In their comparison, the semi-1414

supervised method surpassed the supervised approach in the1415

scarce-label scenario for both synthetic and real field data.1416

To alleviate the costs associated with data annotation,1417

one strategy is to choose a handful of examples (crosslines1418

and/or inlines) for annotation and then utilize these anno-1419

tated samples to train a model for segmenting the remainder1420

of the seismic volume. In essence, this entails sampling1421

representative and distinctive examples that encapsulate1422

the overarching patterns within the seismic volume while1423

excluding redundant and anomalous instances. However,1424

this process is not trivial, as geological layers often display1425

horizontal continuity as a result of the natural sediment de-1426

position process, which leads to an abundance of redundant1427

information in adjacent sections. Therefore, the distance1428

between training and testing sections within the seismic1429

volume has a significant impact, particularly in few-shot1430

scenarios, as also observed by Su-Mei et al. (2022) and1431
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Wang et al. (2023). With this in mind, when attempting1432

segmentation with a limited number of labeled sections, it1433

is essential to consider the sampling strategy to prevent data1434

redundancy and enhance data diversity.1435

One straightforward approach was employed by Wang1436

and Chen (2021), who trained a UNet (Ronneberger et al.,1437

2015) using a reduced number of equally spaced samples1438

from the F3 Dataset. Although their results were promising,1439

it is worth noting that this method merged imbalanced1440

classes in the dataset and was tested on a small testing set.1441

A more ingenious strategy was introduced by Chen et al.1442

(2022b), who presented a sampling method that leverages1443

the Harris corner detector (Derpanis, 2004) to enhance the1444

dataset with spatial features capable of more effectively1445

discriminating seismic sections. With that, the method could1446

select representative samples without any supervision. How-1447

ever, despite the notable achieved improvements compared1448

to a baseline approach, their strategy still required the uti-1449

lization of at least one-quarter of the entire seismic volume.1450

A similar approach to address the scarcity of labeled1451

data involves propagating available labels while considering1452

the lateral variation in seismic data. In their research, Su-1453

Mei et al. (2022) introduced a method that relied on five1454

seismic sections recognized as “well-labeled examples”. At1455

the beginning of the training process, they assessed the1456

similarity between the data in the selected sections and the1457

remaining 3D volume using cosine similarity. They defined1458

subsets of similar sub-datasets associated with each refer-1459

ence data by establishing a threshold. Within each subset,1460

the labels were assigned following the reference labeled1461

section, and the entire subset was employed for a supervised1462

training phase. This complex approach aimed at simulating1463

the process of iterative work done by interpreters.1464

Transfer learning is another approach to be considered1465

in scenarios where data is limited. Transfer learning is a1466

method that focuses on carrying knowledge from a source1467

domain to a target domain (Zhuang et al., 2020). It aims at1468

achieving better target learners without depending on a large1469

amount of data in the target domain. The broader definition1470

can be divided into three categories from a label-setting1471

aspect: transductive, inductive, and unsupervised transfer1472

learning (Zhuang et al., 2020; Pan and Yang, 2009). Domain1473

adaptation is sometimes regarded as a synonym for transfer1474

learning, but it can be seen as a specific case of transductive1475

transfer learning (Pan and Yang, 2009). In this setting, the1476

source and target tasks are alike, but the source and target1477

domains are dissimilar, i.e., the data has the same feature1478

space in both domains, but they have distinct probability1479

distributions (Pan and Yang, 2009). Domain adaptation is1480

also defined as the process of adapting source domains to a1481

target domain, addressing the domain shift by bringing the1482

distribution of both domains closer (Weiss et al., 2016).1483

In our literature review, we identified a few studies that1484

employed transfer learning for seismic segmentation as a1485

way to address the challenge of limited data availability.1486

Wang et al. (2021) initially trained a UNet model for1487

lithofacies segmentation using the Parihaka NZ dataset as1488

the baseline model. Afterward, they harnessed the acquired1489

model weights for fine-tuning on the F3 Netherlands dataset.1490

Their study aimed to achieve optimal results with fewer1491

training and validation examples during the fine-tuning1492

phase while maximizing the utilization of frozen layers.1493

Their method involved exploring various hyperparameters1494

for fine-tuning in a setup where the training and validation1495

sets comprised 10 and 100 labeled sections. Additionally,1496

they investigated the sequence of unfreezing layers within1497

the model when adapting it to the target domain. They1498

identified two local optima for the hyperparameter: one1499

involving minimal unfreezing of just the final layers and1500

another where approximately 18 layers in the decoding1501

section were unfrozen. These findings suggest that fine-1502

tuning the model is most effective when only a few of the1503

final layers are retrained.1504

Similarly, Nasim et al. (2022) employed deep domain1505

adaptation, using the F3 dataset as the source domain1506

and the Penobscot dataset as the target domain. Their1507

primary focus was on classes with limited labeled data.1508

They proposed a network called EarthAdaptNet, which1509

combined elements of both UNet and DaNet, incorporating1510

an ASPP module. They employed the correlation alignment1511

(CORAL (Sun and Saenko, 2016)) method to facilitate1512

unsupervised deep domain adaptation. Notably, the CORAL1513

method minimizes domain shift by aligning the distributions1514

of source and target domains without requiring any target la-1515

bels. Their testing results revealed that the performance was1516

quite limited without domain adaptation methods. However,1517

a substantial enhancement in performance was observed1518

following the application of their refinement method, sur-1519

passing traditional architectures like UNet, particularly for1520

the smaller classes.1521

Using networks pre-trained within specific domains has1522

become well-established but sometimes requires domain1523
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adaptation techniques. One approach to deal with the do-1524

main shift relies on pre-training models within the target1525

domain without manually annotated labels, i.e., applying1526

unsupervised or, more specifically, self-supervised learning1527

(SSL) techniques (Jing et al., 2018; Chen et al., 2020b).1528

Self-supervised learning lies within unsupervised learning1529

techniques where networks are explicitly trained using auto-1530

matically forged labels. In computer vision, SSL approaches1531

have gained significant attention, often relying on pre-text1532

tasks for pre-training within the target domain (Noroozi1533

and Favaro, 2016; Pathak et al., 2016; Gidaris et al., 2018;1534

He et al., 2019; Chen et al., 2020a; Chen and He, 2021;1535

Monteiro et al., 2022).1536

Following this approach, Wang et al. (2023) employed1537

a two-stage method, relying on input reconstruction pre-1538

training. In the initial unsupervised stage, a UNet was pre-1539

trained to reconstruct input data. Subsequently, the encoder1540

weights were kept frozen in the supervised setting and a new1541

decoder designed specifically for lithofacies segmentation1542

was trained. To assess the effectiveness of their approach,1543

the model performance was evaluated under few-shot sce-1544

narios and compared with a supervised setup in the same1545

context. Additionally, they investigated the benefits of the1546

semi-supervised approach by exploring feature maps after1547

pre-training and estimating segmentation uncertainty using1548

deep ensembles (Lakshminarayanan et al., 2017). Their1549

findings demonstrated that not only did the semi-supervised1550

training enhance performance with limited labels, but it1551

also reduced uncertainty. Similarly, Monteiro et al. (2022)1552

also embraced SSL techniques for pre-training, followed by1553

fine-tuning for the target task. Their pre-training process1554

relied on contextual-based pre-text tasks, including training1555

models to recognize image rotation (Gidaris et al., 2018)1556

and reconstructing jigsaw puzzles from shuffled tiles within1557

the image (Noroozi and Favaro, 2016). Subsequently, the1558

models were fine-tuned in few-shot scenarios and the results1559

compared with training from scratch, demonstrating im-1560

proved performance through SSL pre-training. Additionally,1561

they explored the benefits of deep model ensembles, which1562

further enhanced performance by combining activations1563

from multiple models.1564

A recent self-supervised learning technique that has1565

become popular for tasks where obtaining labeled data is1566

expensive or impractical is contrastive learning (Chen et al.,1567

2020a; He et al., 2019; Chen and He, 2021). Its primary1568

objective is to learn meaningful representations of data by1569

contrasting positive pairs (similar samples) and negative1570

pairs (dissimilar samples) within the dataset. The training1571

aims at bringing similar samples or classes closer together1572

in the latent space while pushing apart dissimilar ones,1573

thereby enhancing the model’s understanding of underlying1574

patterns. One major benefit of adopting these strategies1575

is that the models can also benefit from large amounts1576

of unlabeled data. Additionally, the pre-training stage can1577

occur within the target domain, diminishing the data domain1578

shift.1579

Li et al. (2022) conducted a study that combines con-1580

trastive learning with conventional supervised learning.1581

They utilized a limited number of labeled samples, leverag-1582

ing the supervised loss for segmentation. More specifically,1583

they extracted features from regions characterized by high1584

confidence for each class, considering these regions as1585

positive pairs (exhibiting similar features) and negative pairs1586

(displaying dissimilar features). The overall loss function1587

consisted of the sum of the supervised and contrastive1588

loss. This approach yielded compelling results, even when1589

using only 1% of the available training data. In another1590

study involving contrastive learning, Li et al. (2023) devel-1591

oped a framework for automatic seismic facies clustering,1592

eliminating manual labeling. Their method is a one-stage,1593

end-to-end process. Seismic cubes were used instead of1594

seismic traces or their variants for constructing a training1595

dataset, which likely enhanced lateral consistency and the1596

stability of facies mapping. Additionally, they incorporated1597

seismic attributes, a conventional segmentation method,1598

as geological constraints into the network alongside the1599

seismic data (Zhao et al., 2017). By replacing data aug-1600

mentations with seismic attributes, the method enabled the1601

contrastive learning framework to process both types of1602

inputs. This allowed for the maximization of similarities1603

between seismic and multi-attribute cubes at the same1604

location while minimizing similarities between cubes from1605

different positions.1606

5.7. Summary of the Results1607

In this section, we provide a synthesis of the current1608

state of the art in the field of facies segmentation of seismic1609

images. Table 10 provides a detailed breakdown of each1610

reviewed study, including the analyzed dataset, the number1611

of corresponding classes, the results achieved in the four1612

most widely-used metrics, as well as the architecture and1613

loss function employed in the segmentation models.1614
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Table 10
Compilation of results, showing the dataset and interpretation, the commonly available metrics, the adopted loss and
architectures.

Reference Dataset Cls Architecture Loss PA MCA FWIoU mIoU

Abid et al. (2022) F3 (Alaudah) 6
DeepLabv3+,
SegNet

CEL 98 97 NA 94

Li et al. (2022) F3 (Alaudah) 6 DeepLabv3+ CON, CEL 98 95 95 91
Chen et al. (2022b) F3 (Alaudah) 6 Hrnetv2-W32 CEL 93 87 77 88
Tolstaya and Egorov
(2022)

F3 (Alaudah) 6
UNet, EfficientNet
B1

CEL, Dice,
TVL

94 95 91 85

Trinidad et al. (2022) F3 (Alaudah) 6
ABUNet,
ConvLSTM

Focal 94 85 88 NA

Alaudah et al. (2019) F3 (Alaudah) 6
Encoder-decoder
CNN

NA 90 82 83 NA

Guazzelli et al. (2020) F3 (Alaudah) 6 CNN NA 88 64 79 NA
Wang et al. (2021) F3 (Alaudah) 6 UNet Dice 82 NA NA NA
Wang and Chen (2021) F3 (Silva) 8 UNet, BNN CEL 97 NA NA 94
Monteiro et al. (2022) F3 (Silva) 10 ResNet50 CEL NA NA NA 83
Wang et al. (2023) F3 (Silva) 10 UNet CEL, MSE 99 99 NA NA

Zhang et al. (2021)
F3 (Conoco-
Phillips)

9
3D CNN, SegNet,
DeepLabv3+

SGD NA NA NA 92

Zhang et al. (2019)
F3 (Conoco-
Phillips)

9
SegNet,
UNet-based

SGD 97 NA NA NA

Wang et al. (2019) F3 (Private) 9 UNet-based NA NA NA NA 88
Liu et al. (2020a) F3 (Private) 9 VGGNet, GAN ADV 86 NA NA NA
Li et al. (2020) F3 (Private) 4 ADDCNN CEL 87 NA NA NA

Li et al. (2022)
Parihaka
(Chevron)

6 DeepLabv3+ CON, CEL 97 92 94 88

Tolstaya and Egorov
(2022)

Parihaka
(Chevron)

6
UNet,
EfficienteNet B1

CE, Dice,
TVL

94 96 90 77

Monteiro et al. (2022)
Parihaka
(Chevron)

6 ResNet50 CEL NA NA NA 55

Su-Mei et al. (2022)
Parihaka
(Chevron)

6 UNet CEL, CS 95 NA NA NA

Nasim et al. (2022)
Penobscot
(Baroni)

6 EAN CORAL 85 78 77 62

Chevitarese et al. (2018)
Penobscot
(Private)

7 Danet-FCN NA 97 NA NA NA

Shi et al. (2019)
Synthetic
(Salt/Not-salt)

2 UNet CEL 96 NA NA NA

Mukhopadhyay and
Mallick (2019)

TGS Salt
(Salt/Sediment)

2 Bayesian SegNet NA 91 NA NA NA

ABUnet: Atrous Bidirectional UNet; BNN: Bayesian neural network; CEL: Cross-entropy loss; CNN: Convolutional Network;
CON: Contrastive loss; CS: Cosine similarity; EAN: EarthAdaptNet; FWIoU: Frequency weighted intersection over union;
GAN: Generative Adversarial Network; LSTM: Long short-term memory; MCA: Mean class accuracy; mIoU: Mean
Intersection over Union; MSE: Mean squared error; PA: Pixel accuracy; SGD: Stochastic Gradient Descent; TVL: Total
Variation Loss.

First, as already mentioned in Section 5.4, recall that the1615

most commonly reported metrics are PA, MCA, FWIoU,1616

and mIoU. While PA is widely used in this context, it’s1617

worth noting that it’s not the standard metric for segmen-1618

tation tasks. Since segmentation tasks often involve class1619

imbalance, relying solely on PA may introduce bias in1620

performance assessment. Hence, an important direction for1621

the field of seismic image segmentation is to embrace and1622

incorporate evaluation strategies more commonly employed1623

in general semantic segmentation research, such as the1624

mIoU metric (Lateef and Ruichek, 2019), which was used1625

in several studies (Abid et al., 2022; Li et al., 2022; Chen1626

Monteiro et al.: Preprint submitted to Elsevier Page 25 of 32



Literature Review on Deep Learning for the Segmentation of Seismic Images

et al., 2022b; Tolstaya and Egorov, 2022; Wang and Chen,1627

2021; Monteiro et al., 2022; Zhang et al., 2021; Wang et al.,1628

2019; Nasim et al., 2022).1629

The results reported in the reviewed works and dis-1630

played in Table 10 may seem to be enough to determine1631

the optimal approach for each dataset. Unfortunately, this1632

is not true, as the absence of a concrete benchmark leads1633

to significant differences in the experimental setup of each1634

study and make their results incomparable. For instance,1635

consider the results reported for Wang and Chen (2021)1636

and Wang et al. (2023). Although they employ the same1637

dataset (F3 Netherlands interpreted by Silva et al. (2019)),1638

a comparison between their results is infeasible due to1639

differences in the way the data is used: While the former1640

study merges classes and use only 30 sections for testing,1641

the latter omits test set size and composition details.1642

Finally, considering the challenges posed by the limited1643

availability of annotated data, some of the studies listed in1644

Table 10 have proposed unsupervised or semi-supervised1645

approaches for seismic segmentation (as indicated in Ta-1646

ble 4). To maintain brevity and fairness, Table 10 showcases1647

only the best results achieved by each study, which are1648

typically achieved through fully supervised methods or with1649

the maximum available training data. As such, it is essential1650

to recognize that results reported for unsupervised or few-1651

shot scenarios warrant a more in-depth analysis and should1652

not be blindly compared to those obtained through fully1653

supervised approaches.1654

6. Challenges and Opportunities1655

As discussed throughout this document, there is an1656

increasing interest in employing deep learning techniques1657

to address various seismic segmentation tasks. However,1658

because there are still many difficulties for automating1659

seismic segmentation, this field presents many opportunities1660

for improvement and open challenges.1661

6.1. Challenges1662

Our systematic review and data analysis provided some1663

insights into the difficulty of using consolidated methods1664

of deep models when working with seismic data. Several1665

challenges regarding the application of deep learning have1666

been discussed throughout this document. Here, we debate1667

and briefly synthesize them.1668

Poor and scarce labeled data. Working with seismic1669

data involves several issues that influence deep learning1670

algorithms. The complexity of geological features shown1671

in seismic images is a significant problem. These structures1672

are frequently subject to alternative interpretations, resulting1673

in disparities among specialists. Unlike other domains of1674

computer vision, there are few publicly available annotated1675

datasets for seismic interpretation (Alaudah et al., 2019).1676

Also, the confidentiality of seismic interpretations, driven1677

by commercial and strategic considerations, exacerbates the1678

problem.1679

Lack of standard protocols for performance com-1680

parison. Due to the scarcity of labeled data, training and1681

assessing deep learning models for seismic data processing1682

becomes problematic. While many studies may use the1683

same dataset (See Table 9), authors frequently combine1684

classes from the available datasets, leading to discrepancies1685

in the segmentation method. This absence of consistency1686

makes establishing a baseline for comparison difficult and1687

limits reproducibility. Furthermore, the lack of a common1688

benchmark divides results into a broad range of testing sets1689

with varying sizes and assessment techniques, confounding1690

performance comparisons across different methodologies1691

even further.1692

6.2. Opportunities1693

With challenges come opportunities to improve the1694

current state of research in the area of deep learning for1695

seismic segmentation. First and foremost, there is a pressing1696

need to establish a robust benchmarking methodology that1697

can accommodate multiple datasets and their respective1698

interpretations. Disregarding the notion of one interpretation1699

being superior to another, building an effective procedure1700

for assessing the quality of the proposed methods is essen-1701

tial. Among the available benchmarks, Alaudah et al. (2019)1702

stands out as the most comprehensive and well-defined. An1703

analog approach could (and should) be developed for the1704

other available datasets (Silva et al., 2019; Baroni et al.,1705

2019; Inc; F3).1706

A noteworthy observation is the increasing interest in1707

addressing segmentation with limited labels, particularly in1708

few-shot scenarios. Some attempts to improve performance1709

with fewer data were described in Section 5 (Wang and1710

Chen, 2021; Su-Mei et al., 2022; Li et al., 2022; Mon-1711

teiro et al., 2022; Chen et al., 2022b). Approaches involv-1712

ing semi-supervised learning (Su-Mei et al., 2022), self-1713

supervised learning (Li et al., 2022), transfer learning (Mon-1714

teiro et al., 2022), domain adaptation (Nasim et al., 2022),1715
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and ensemble techniques (Abid et al., 2022) have shown1716

promise in handling this challenge. These methodologies1717

offer potential venues for further exploration in effectively1718

tackling the issue of limited labeled data for seismic seg-1719

mentation.1720

Considering the mentioned points, it is evident that there1721

is room for improvement in the field of deep learning for1722

seismic segmentation. Future research efforts should prior-1723

itize the development of a robust and reliable benchmark1724

that can be employed consistently. Additionally, it is crucial1725

to compare the accomplishments of various approaches1726

when working with limited labeled data. This comparative1727

analysis will help to bridge the gap between current method-1728

ologies and real-world scenarios, enabling their implemen-1729

tation in routine activities conducted by geoscientists.1730

7. Conclusion1731

This work presented a review of deep learning ap-1732

proaches designed for seismic data segmentation. It focused1733

on facies delimitation but also addressed salt and channeled1734

structure segmentation. Through a comprehensive and re-1735

producible literature review, we identified and analyzed var-1736

ious approaches, architectures, and methodologies utilized1737

in this field. Also, we critically assessed the merits and flaws1738

of the existing studies. By analyzing the methodologies,1739

experimental setups, and reported results, we identified1740

areas of improvement and potential biases or limitations.1741

This evaluation provide recommendations for future studies,1742

including opportunities for refining existing approaches and1743

addressing specific challenges in seismic data segmentation.1744

Regarding the challenges, the complexity of geological1745

features in seismic images and the subjectivity of interpreta-1746

tions among specialists pose significant difficulties in estab-1747

lishing baselines and performance comparisons. In addition,1748

the scarcity of publicly available annotated datasets further1749

complicates the training and assessment of deep learning1750

models.1751

Nevertheless, this work also identified opportunities for1752

research in this field. One crucial and natural opportunity1753

lies in establishing a robust benchmark methodology that1754

accommodates multiple datasets and interpretations. Fur-1755

thermore, exploring approaches such as few-shot learning,1756

semi- and self-supervised learning, transfer learning, do-1757

main adaptation, and ensemble techniques can help address1758

the challenge of limited labeled data in segmentation prob-1759

lems.1760

Acknowledgments1761

The authors would like to thank Petróleo Brasileiro S.A.1762

for the technical and financial support through its coopera-1763

tion agreement with the UFMG - Universidade Federal de1764

Minas Gerais.1765

CRediT authorship contribution statement1766

Bruno A. A. Monteiro: Writing - Original Draft; writ-1767

ing review & editing; Investigation; Methodology; Formal1768

analysis; Visualization; Validation; Project administration.1769

Leonardo M. S. Jorge: Methodology (equal); writing1770

- original draft (equal). Rafael H. Vareto: Methodol-1771

ogy; writing - original draft; writing review & editing.1772

Bryan S. Oliveira: Methodology (equal); writing - orig-1773

inal draft (equal). Luiz Alberto Lima: Conceptualiza-1774

tion (equal); resources (equal); validation (equal); writ-1775

ing review & editing (equal). Alexei M. C. Machado:1776

Conceptualization (equal); project administration (equal);1777

supervision (equal); validation (equal); writing review &1778

editing (equal). William Robson Schwartz: Conceptu-1779

alization (equal); project administration (equal); supervi-1780

sion (equal); validation (equal); writing review & edit-1781

ing (equal). Pedro O. S. Vaz-de-Melo: Conceptualization1782

(equal); project administration (equal); supervision (equal);1783

validation (equal); writing review & editing (equal).1784

References1785

Abid, B., Khan, B.M., Memon, R.A., 2022. Seismic facies segmentation1786

using ensemble of convolutional neural networks. Wireless Communi-1787

cations and Mobile Computing 2022.1788

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., 2012.1789

Slic superpixels compared to state-of-the-art superpixel methods. IEEE1790

transactions on pattern analysis and machine intelligence 34, 2274–1791

2282.1792

Alaudah, Y., Michałowicz, P., Alfarraj, M., AlRegib, G., 2019. A machine-1793

learning benchmark for facies classification. Interpretation 7, SE175–1794

SE187.1795

An, Y., Du, H., Ma, S., Niu, Y., Liu, D., Wang, J., Du, Y., Childs, C.,1796

Walsh, J., Dong, R., 2023. Current state and future directions for1797

deep learning based automatic seismic fault interpretation: A systematic1798

review. Earth-Science Reviews 243, 104509.1799

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. Segnet: A deep1800

convolutional encoder-decoder architecture for image segmentation.1801

IEEE Transactions on Pattern Analysis and Machine Intelligence 39,1802

2481–2495.1803

Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein,1804

T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al., 2023. A cookbook1805

of self-supervised learning. arXiv preprint arXiv:2304.12210 .1806

Monteiro et al.: Preprint submitted to Elsevier Page 27 of 32



Literature Review on Deep Learning for the Segmentation of Seismic Images

Baroni, L., Silva, R.M., Ferreira, R.S., Civitarese, D., Szwarcman, D.,1807

Brazil, E.V., 2019. Penobscot dataset: Fostering machine learning1808

development for seismic interpretation. arXiv:1903.12060.1809

Baroni, L., Silva, R.M., S. Ferreira, R., Chevitarese, D., Szwarcman, D.,1810

Vital Brazil, E., 2018. Penobscot interpretation dataset. Zenodo .1811

Bertasius, G., Shi, J., Torresani, L., 2015. Semantic segmentation with1812

boundary neural fields, in: 2017 CVPR, IEEE Computer Society. pp.1813

3602–3610.1814

Bi, Z., Geng, Z., Gao, H., Wu, X., Li, H., 2020. 3d relative geologic1815

time estimation with deep learning, in: SEG International Exposition1816

and Annual Meeting, SEG. p. D021S008R007.1817

Bi, Z., Wu, X., Geng, Z., Li, H., 2021. Deep relative geologic time:1818

A deep learning method for simultaneously interpreting 3-d seismic1819

horizons and faults. Journal of Geophysical Research: Solid Earth 126,1820

e2021JB021882.1821

Bjørlykke, K., 2015. Introduction to petroleum geology. Petroleum1822

geoscience: From sedimentary environments to rock physics , 1–29.1823

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2017a.1824

Deeplab: Semantic image segmentation with deep convolutional nets,1825

atrous convolution, and fully connected crfs. IEEE transactions on1826

pattern analysis and machine intelligence 40, 834–848.1827

Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017b. Rethinking1828

atrous convolution for semantic image segmentation. arXiv preprint1829

arXiv:1706.05587 .1830

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-1831

decoder with atrous separable convolution for semantic image segmen-1832

tation, in: Proceedings of the European conference on computer vision1833

(ECCV), pp. 801–818.1834

Chen, M., Wu, S., Bedle, H., Xie, P., Zhang, J., Wang, Y., 2022a. Modeling1835

of subsurface sedimentary facies using self-attention generative adver-1836

sarial networks (sagans). Journal of Petroleum Science and Engineering1837

214, 110470.1838

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020a. A simple1839

framework for contrastive learning of visual representations, in: ICML,1840

PMLR. pp. 1597–1607.1841

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G., 2020b.1842

Big self-supervised models are strong semi-supervised learners.1843

arXiv:2006.10029.1844

Chen, X., He, K., 2021. Exploring simple siamese representation learning,1845

in: Proceedings of the IEEE/CVF conference on computer vision and1846

pattern recognition, pp. 15750–15758.1847

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H.,1848

Dong, X., Luong, T., Hsieh, C.J., et al., 2023. Symbolic discovery of1849

optimization algorithms. arXiv preprint arXiv:2302.06675 .1850

Chen, X., Zou, Q., Xu, X., Wang, N., 2022b. A stronger baseline for1851

seismic facies classification with less data. IEEE TGRS 60, 1–10.1852

Chevitarese, D.S., Szwarcman, D., Brazil, E.V., Zadrozny, B., 2018. Ef-1853

ficient classification of seismic textures, in: 2018 International Joint1854

Conference on Neural Networks (IJCNN), IEEE. pp. 1–8.1855

Chopra, S., Marfurt, K.J., 2005. Seismic attributes—a historical perspec-1856

tive. Geophysics 70, 3SO–28SO.1857

Chowdhary, K., Chowdhary, K., 2020. Natural language processing.1858

Fundamentals of artificial intelligence , 603–649.1859

Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.,1860

2016. 3d u-net: Learning dense volumetric segmentation from sparse1861

annotation, in: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G.,1862

Wells, W. (Eds.), MICCAI 2016, Springer. Springer International Pub-1863

lishing, Cham. pp. 424–432.1864

Contreras, J., Ceberio, M., Kreinovich, V., 2021. Why dilated convolutional1865

neural networks: A proof of their optimality. Entropy 23.1866

Covidence, . How to conduct a systematic review from beginning1867

to end. https://www.covidence.org/blog/how-to-conduct-a-systematic-1868

review-from-beginning-to-end/. Accessed: 2023-05-10.1869

Csurka, G., Larlus, D., Perronnin, F., Meylan, F., 2013. What is a good1870

evaluation measure for semantic segmentation?., in: Bmvc, Bristol. pp.1871

10–5244.1872

Delfiner, P., Peyret, O., Serra, O., 1987. Automatic determination of1873

lithology from well logs. SPE formation evaluation 2, 303–310.1874

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Imagenet:1875

A large-scale hierarchical image database, in: 2009 IEEE conference on1876

computer vision and pattern recognition, Ieee. pp. 248–255.1877

Deng, L., Hinton, G., Kingsbury, B., 2013. New types of deep neural1878

network learning for speech recognition and related applications: An1879

overview, in: 2013 IEEE international conference on acoustics, speech1880

and signal processing, IEEE. pp. 8599–8603.1881

Derpanis, K.G., 2004. The harris corner detector. York University 2, 1–2.1882

Dietterich, T.G., 2000. Ensemble methods in machine learning, in: Multi-1883

ple Classifier Systems, Springer Berlin Heidelberg, Berlin, Heidelberg.1884

pp. 1–15.1885

Dos Santos, J.A., Gosselin, P.H., Philipp-Foliguet, S., Torres, R.d.S., Falao,1886

A.X., 2012. Multiscale classification of remote sensing images. IEEE1887

TGRS 50, 3764–3775.1888

Dramsch, J.S., Lüthje, M., 2018. Deep-learning seismic facies on state-1889

of-the-art cnn architectures, in: 2018 SEG International Exposition and1890

Annual Meeting, OnePetro. pp. SEG–2018.1891

Du, S., Du, S., Liu, B., Zhang, X., 2021. Incorporating deeplabv3+ and1892

object-based image analysis for semantic segmentation of very high1893

resolution remote sensing images. International Journal of Digital Earth1894

14, 357–378.1895

Dumay, J., Fournier, F., 1988. Multivariate statistical analyses applied to1896

seismic facies recognition. Geophysics 53, 1151–1159.1897

Eli-Chukwu, N.C., 2019. Applications of artificial intelligence in agricul-1898

ture: A review. Engineering, Technology & Applied Science Research1899

9, 4377–4383.1900

EnergyGlossary, 2023. Diagram of crosslines, inlines, and a time slice.1901

F3, M., . Data from the malenov machine learning seismic interpretation1902

project from conocophillips norge. Accessed: 2023-05-19.1903

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y.,1904

Böhm, A., Deubner, J., Jaeckel, Z., Seiwald, K., Dovzhenko, O., Tietz,1905

O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T., Prinz, M., Palme,1906

K., Simons, M., Ronneberger, O., 2019. U-net: deep learning for cell1907

counting, detection, and morphometry. Nature Methods 16.1908

Farabet, C., Couprie, C., Najman, L., Lecun, Y., 2013. Learning hierarchi-1909

cal features for scene labeling. IEEE transactions on pattern analysis1910

and machine intelligence 35, 1915–1929.1911

Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graph-based image1912

segmentation. International journal of computer vision 59, 167–181.1913

Gao, D., 2007. Application of three-dimensional seismic texture analysis1914

with special reference to deep-marine facies discrimination and inter-1915

pretation: Offshore angola, west africa. AAPG bulletin 91, 1665–1683.1916

Monteiro et al.: Preprint submitted to Elsevier Page 28 of 32

http://arxiv.org/abs/1903.12060
http://arxiv.org/abs/2006.10029


Literature Review on Deep Learning for the Segmentation of Seismic Images

Gidaris, S., Singh, P., Komodakis, N., 2018. Unsupervised representation1917

learning by predicting image rotations. arXiv:1803.07728.1918

Girshick, R., 2015. Fast r-cnn, in: Proceedings of the IEEE international1919

conference on computer vision, pp. 1440–1448.1920

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature1921

hierarchies for accurate object detection and semantic segmentation.1922

arXiv:1311.2524.1923

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.1924

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,1925

Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial1926

networks. Advances in Neural Information Processing Systems 3.1927

Guazzelli, A.B., Roisenberg, M., Rodrigues, B.B., 2020. Efficient 3d1928

semantic segmentation of seismic images using orthogonal planes 2d1929

convolutional neural networks, in: 2020 International Joint Conference1930

on Neural Networks (IJCNN), IEEE. pp. 1–8.1931

Harzing, A.W., . Publish or perish.1932

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2019. Momentum1933

contrast for unsupervised visual representation learning. arXiv preprint1934

arXiv:1911.05722 .1935

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn, in:1936

Proceedings of the IEEE international conference on computer vision,1937

pp. 2961–2969.1938

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image1939

recognition, in: Proceedings of the IEEE conference on computer vision1940

and pattern recognition, pp. 770–778.1941

He, Y., Carass, A., Liu, Y., Jedynak, B.M., Solomon, S.D., Saidha, S., Cal-1942

abresi, P.A., Prince, J.L., 2021. Structured layer surface segmentation1943

for retina oct using fully convolutional regression networks. Medical1944

Image Analysis 68, 101856.1945

Herron, D.A., 2011. First steps in seismic interpretation. Society of1946

Exploration Geophysicists.1947

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior,1948

A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al., 2012a. Deep neural1949

networks for acoustic modeling in speech recognition: The shared views1950

of four research groups. IEEE Signal processing magazine 29, 82–97.1951

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov,1952

R.R., 2012b. Improving neural networks by preventing co-adaptation of1953

feature detectors. arXiv preprint arXiv:1207.0580 .1954

Iglovikov, V., Shvets, A., 2018. Ternausnet: U-net with vgg11 encoder1955

pre-trained on imagenet for image segmentation.1956

Inc, C.U., . 2020 seg annual meeting machine learning interpretation1957

workshop. Accessed: 2023-05-19.1958

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q.,1959

Shen, H., Wang, Y., 2017. Artificial intelligence in healthcare: past,1960

present and future. Stroke and vascular neurology 2.1961

Jing, L., Tian, Y., 2019. Self-supervised visual feature learning with deep1962

neural networks: A survey. IEEE Transactions on Pattern Analysis and1963

Machine Intelligence 43.1964

Jing, L., Yang, X., Liu, J., Tian, Y., 2018. Self-supervised spatiotem-1965

poral feature learning via video rotation prediction. arXiv preprint1966

arXiv:1811.11387 .1967

Kaggle, . Tgs salt identification challenge.1968

https://www.kaggle.com/competitions/tgs-salt-identification-1969

challenge/data. Accessed: 2023-07-28.1970

Kandel, M., He, Y., Lee, Y.J., Chen, T., Sullivan, K., Aydın, O., Saif,1971

M., Kong, H., Sobh, N., Popescu, G., 2020. Phase imaging with1972

computational specificity (pics) for measuring dry mass changes in sub-1973

cellular compartments. Nature Communications 11.1974

Khan, K.S., Kunz, R., Kleijnen, J., Antes, G., 2003. Five steps to1975

conducting a systematic review. Journal of the royal society of medicine1976

96, 118–121.1977

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L.,1978

Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al., 2023. Segment1979

anything. arXiv preprint arXiv:2304.02643 .1980

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012a. Imagenet classification1981

with deep convolutional neural networks, in: Pereira, F., Burges, C.,1982

Bottou, L., Weinberger, K. (Eds.), Advances in Neural Information1983

Processing Systems, Curran Associates, Inc.. pp. 84–90.1984

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012b. Imagenet classification1985

with deep convolutional neural networks. Advances in neural informa-1986

tion processing systems 25.1987

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. Imagenet classification1988

with deep convolutional neural networks. Communications of the ACM1989

60, 84–90.1990

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2017. Simple and scalable1991

predictive uncertainty estimation using deep ensembles. Advances in1992

neural information processing systems 30.1993

Lateef, F., Ruichek, Y., 2019. Survey on semantic segmentation using deep1994

learning techniques. Neurocomputing 338, 321–348.1995

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521,1996

436–44.1997

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,1998

W., Jackel, L.D., 1989. Backpropagation applied to handwritten zip1999

code recognition. Neural computation 1, 541–551.2000

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based2001

learning applied to document recognition. Proceedings of the IEEE 86,2002

2278–2324.2003

Lee, J., Mukerji, T., . The stanford vi-e reservoir: A synthetic data set2004

for joint seismic-em time-lapse monitoring algorithms, in: 25th Annual2005

Report, Stanford Center for Reservoir Forecasting, pp. 1–53.2006

Li, B., Liu, S., Xu, W., Qiu, W., 2018. Real-time object detection2007

and semantic segmentation for autonomous driving, in: MIPPR 2017:2008

Automatic Target Recognition and Navigation, SPIE. pp. 167–174.2009

Li, F., Zhou, H., Wang, Z., Wu, X., 2020. Addcnn: An attention-based2010

deep dilated convolutional neural network for seismic facies analysis2011

with interpretable spatial–spectral maps. IEEE TGRS 59, 1733–1744.2012

Li, J., Wu, X., Ye, Y., Yang, C., Hu, Z., Sun, X., Zhao, T., 2023.2013

Unsupervised contrastive learning for seismic facies characterization.2014

Geophysics 88, WA81–WA89.2015

Li, K., Liu, W., Dou, Y., Xu, Z., Duan, H., Jing, R., 2022. Contrastive2016

learning approach for semi-supervised seismic facies identification us-2017

ing high-confidence representations. arXiv preprint arXiv:2210.047762018

.2019

Li, W., Chen, H., Shi, Z., 2021. Semantic segmentation of remote sensing2020

images with self-supervised multitask representation learning. IEEE2021

Journal of Selected Topics in Applied Earth Observations and Remote2022

Sensing 14, 6438–6450.2023

Liang-Chieh, C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.,2024

2015. Semantic image segmentation with deep convolutional nets2025

Monteiro et al.: Preprint submitted to Elsevier Page 29 of 32

http://arxiv.org/abs/1803.07728
http://arxiv.org/abs/1311.2524


Literature Review on Deep Learning for the Segmentation of Seismic Images

and fully connected crfs, in: International Conference on Learning2026

Representations, pp. arXiv–1412.2027

Liu, M., Jervis, M., Li, W., Nivlet, P., 2020a. Seismic facies classification2028

using supervised convolutional neural networks and semisupervised2029

generative adversarial networks. Geophysics 85, O47–O58.2030

Liu, X., Chen, X., Li, J., Zhou, X., Chen, Y., 2020b. Facies identification2031

based on multikernel relevance vector machine. IEEE TGRS 58, 7269–2032

7282.2033

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks2034

for semantic segmentation, in: Proceedings of the IEEE conference on2035

computer vision and pattern recognition, pp. 3431–3440.2036

Ma, Z., Mei, G., 2021. Deep learning for geological hazards analysis: Data,2037

models, applications, and opportunities. Earth-Science Reviews 223,2038

103858.2039

Martin, D.R., Fowlkes, C.C., Malik, J., 2004. Learning to detect natural2040

image boundaries using local brightness, color, and texture cues. IEEE2041

transactions on pattern analysis and machine intelligence 26, 530–549.2042

de Matos, M.C., Osorio, P.L., Johann, P.R., 2007. Unsupervised seismic2043

facies analysis using wavelet transform and self-organizing maps. Geo-2044

physics 72, P9–P21.2045

Middleton, G.V., Hampton, M.A., 1973. Part i. sediment gravity flows:2046

mechanics of flow and deposition. Soc. Econ. Paleont. Miner. Short2047

course .2048

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopou-2049

los, D., 2022. Image segmentation using deep learning: A survey. IEEE2050

transactions on pattern analysis and machine intelligence 44, 3523–2051

3542.2052

Mondol, N.H., 2010. Seismic Exploration. Springer Berlin Heidelberg,2053

Berlin, Heidelberg. chapter 17. pp. 375–402.2054

Monteiro, B.A.A., Oliveira, H., Santos, J.A.d., 2022. Self-supervised2055

learning for seismic image segmentation from few-labeled samples.2056

IEEE GRSL 19, 1–5.2057

Mukhopadhyay, P., Mallick, S., 2019. Bayesian deep learning for seismic2058

facies classification and its uncertainty estimation, in: SEG Technical2059

Program Expanded Abstracts 2019. Society of Exploration Geophysi-2060

cists, pp. 2488–2492.2061

Najman, L., Schmitt, M., 1994. Watershed of a continuous function. Signal2062

Processing 38, 99–112.2063

Nanda, N.C., 2021. Seismic data interpretation and evaluation for hydro-2064

carbon exploration and production. Springer.2065

Nasim, M.Q., Maiti, T., Srivastava, A., Singh, T., Mei, J., 2022. Seismic2066

facies analysis: a deep domain adaptation approach. IEEE TGRS 60,2067

1–16.2068

Nazem, F., Ghasemi, F., Fassihi, A., Dehnavi, A., 2021. 3d u-net: A voxel-2069

based method in binding site prediction of protein structure. Journal of2070

Bioinformatics and Computational Biology 19, 2150006.2071

Neubert, P., Protzel, P., 2014. Compact watershed and preemptive slic: On2072

improving trade-offs of superpixel segmentation algorithms, in: 20142073

22nd international conference on pattern recognition, IEEE. pp. 996–2074

1001.2075

Nichols, G., 2009. Sedimentology and stratigraphy. John Wiley & Sons.2076

Niu, Z., Zhong, G., Yu, H., 2021. A review on the attention mechanism of2077

deep learning. Neurocomputing 452, 48–62.2078

Nock, R., Nielsen, F., 2004. Statistical region merging. IEEE Transactions2079

on pattern analysis and machine intelligence 26, 1452–1458.2080

Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for2081

semantic segmentation, in: 2021 IEEE/CVF International Conference2082

on Computer Vision (ICCV), pp. 1520–1528.2083

Noroozi, M., Favaro, P., 2016. Unsupervised learning of visual represen-2084

tations by solving jigsaw puzzles. Lecture Notes in Computer Science2085

(including subseries Lecture Notes in Artificial Intelligence and Lecture2086

Notes in Bioinformatics) 9910 LNCS, 69–84.2087

Otsu, N., 1979. A threshold selection method from gray-level histograms.2088

IEEE transactions on systems, man, and cybernetics 9, 62–66.2089

Ouma, Y.O., Josaphat, S., Tateishi, R., 2008. Multiscale remote sensing2090

data segmentation and post-segmentation change detection based on2091

logical modeling: Theoretical exposition and experimental results for2092

forestland cover change analysis. Computers & geosciences 34, 715–2093

737.2094

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A., 2016.2095

Rayyan — a web and mobile app for systematic reviews.2096

Page, M.J.e., 2021. The prisma 2020 statement: an updated guideline for2097

reporting systematic reviews. BMJ .2098

Pan, S.J., Yang, Q., 2009. A survey on transfer learning. IEEE Transactions2099

on knowledge and data engineering 22, 1345–1359.2100

Pan, Z., Xu, J., Guo, Y., Hu, Y., Wang, G., 2020. Deep learning2101

segmentation and classification for urban village using a worldview2102

satellite image based on u-net. Remote Sensing 12.2103

Parker, S.P., 1984. McGraw-Hill concise encyclopedia of science &2104

technology. McGraw-Hill.2105

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.,2106

2016. Context encoders: Feature learning by inpainting.2107

arXiv:1604.07379.2108

Polat, H., 2022. A modified deeplabv3+ based semantic segmentation2109

of chest computed tomography images for covid-19 lung infections.2110

International Journal of Imaging Systems and Technology 32, 1481–2111

1495.2112

Qian, F., Yin, M., Liu, X.Y., Wang, Y.J., Lu, C., Hu, G.M., 2018. Unsu-2113

pervised seismic facies analysis via deep convolutional autoencoders.2114

Geophysics 83, A39–A43.2115

Reading, B., 1978. Sedimentary environments and facies. Progress in2116

Physical Geography 4, 624–625.2117
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