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Abstract— Open-set face recognition challenges biometric
systems by requiring them to identify registered subjects while
rejecting unregistered individuals. This task is particularly
demanding in watchlist scenarios, where biometric systems
must focus on subjects of interest and disregard irrelevant
faces. To address real-world face applications, this study asso-
ciates quickly trainable adaptation networks with a logit-and-
distance-based cost function that explores non-gallery samples
in favor of minimizing the open-space risk. These background
instances are either specified in dataset protocols or syntheti-
cally built at training time. The proposed Axial Sphere Loss
(ASL) shifts each class into pre-defined regions in the latent
space and mutually pushes non-gallery samples toward the
space origin, forming spherical containers around each class
template at inference time. We show that training an adapter
network with ASL does not hinder closed-set recognition scores
but significantly boosts open-set identification rates, achieving
state-of-the-art performance on three well-known face bench-
marks, namely, LFW, IJB-C, and UCCS datasets.

I. INTRODUCTION

Smart face recognition has become a prominent research
area in recent decades. Nowadays, face identification systems
are not only prevalent in social media and photo tagging
applications but also serve as a crucial tool for governments,
law enforcement, and private companies [8, 13]. Despite the
ongoing progress, a serious limitation remains: the inability
to handle images of never-seen individuals, a typical sce-
nario in surveillance or security environments. Essentially,
research addressing such a level of uncertainty, in which a
biometric system may encounter entirely new distributions or
data points not belonging to any known class, has received
comparatively less attention [38].

Open-set face recognition characterizes the aforemen-
tioned setting where anonymous individuals, unseen during
training and enrollment stages, only come into sight during
evaluation time [1, 16, 41]. For a clear illustration, an open-
set face application is expected to dismiss law-abiding pas-
sengers at airports, but warn the security personnel whenever
law offenders turn up. Such biometric systems may also
raise alerts when unauthorized people attempt to access
an organization’s premises. Unfortunately, recent newspaper
articles have shown that people being misidentified is not
a hypothetical exercise but has actually occurred several
times across the United States [19, 35]. To make matters
worse, false alarms should be avoided by any means since
a system identification error may bias the security approach
and mistakenly hold up innocent people in custody [16].

Fig. 1: OPEN-SET CLASSIFICATION WITH AXIAL SPHERE LOSS. Back-
ground instances (grey crosses +) are pushed to the space origin whereas
gallery-enrolled classes, represented by a set of symbols ■ ⋆ ♦ • are shifted
to specific regions alongside each axis. Samples outside their corresponding
spherical container hold low acceptance scores and, consequently, should be
regarded as unknown categories.

The open-space risk is a concept concerning the chance
of misclassifying a sample as belonging to a known class
when it literally pertains to an unknown category [38]. For
most machine learning algorithms learn patterns from finite
data, they implicitly assume that probe samples are drawn
from the same underlying data distribution. These methods
often struggle to delineate clear decision boundaries between
unknown and known classes, acting like nearest-neighbor
classifiers and leading to further false-positive occurrences.
The unreliable results arise from the lack of any reference
point in the training set to support the classification of probe
data originating from different distributions [39].

The majority of open-set studies evaluate approaches on
non-face datasets containing a reduced number of classes
but holding an abundant volume of samples per category [9,
22, 30]. These datasets usually contain training and test
samples of known classes drawn from the same underlying
data distribution [44]. Methods evaluated in such conditions
are not hampered by the shortage of samples available for
training and, in fact, provide better generalization capabilities
since they effectively preserve the inherent data statistics [6].
Then, we believe that the good results attained by many
methods in well-supplied datasets would not always extend
to more demanding open-set tasks [11, 16].

Quick install: use pip install openloss for reproducibility.



The goal of this paper is to introduce a technique that can
be successfully deployed to realistic biometric environments,
like face recognition tasks. In fact, we propose the AXIAL
SPHERE LOSS (ASL), a novel cost function that induces
artificial neural networks to push each class of interest, that
is, the gallery set, to fixed regions along each axis and also
encourages non-gallery training samples to lie close to the
logit space origin. More precisely, ASL has been designed to
benefit from background samples, training instances meant to
resemble unknown categories, that may provide information
about decision boundaries between known classes and un-
charted data. Seeing that most datasets do not contain readily
available background samples, we find synthesizing new data
within the latent space during training a feasible alternative.
In consequence, ASL can take advantage of diversified data
and assist neural networks in refining decision boundaries,
identifying potential outliers, reducing false positives, and
improving the overall accuracy of the model.

Figure 1 illustrates how ASL builds a sphere-like proba-
bilistic container around each class template (centroid). At
inference time, the closer a probe sample gets to a sphere
center, the greater its chance of being contained in that class.
The farther it lies from all gallery templates, the lower the
prospects of being a class of interest, increasing its chance
of rejection. In summary, the acceptance/rejection scheme
provides a mechanism to quantify the open-space risk for
each probe sample, assuming that known samples are close
to their corresponding class centroid but unknown samples
lie somewhere else in the open-space.

This work consists of neural adapter networks acting as
a replacement of fully-connected layers from pre-trained
deep architectures in pursuance of agile gallery specializa-
tion [43]. We conduct the analysis with three pretrained
RESNET-based backbones [5, 10, 23], which generate feature
embeddings that serve as input to the adapter network. The
main experiments are carried out on three face benchmarks,
namely LFW, IJB-C and UCCS [17, 20, 27]. We utilize LFW
to find the best hyperparameters and then apply the very
same configuration when evaluating other face datasets. Such
criterion confirms the robustness of our proposed cost func-
tion across different domains. The investigation demonstrates
the superiority of ASL, achieving superior performance on
different open-set protocols, especially when combined with
either genuine or synthesized background samples.

The major contributions of our work are:
1) ASL, a cost function that either pushes known classes

further apart onto fixed reference points (coordinate
axes) or drives non-gallery samples toward the origin.

2) A new inference metric designed to improve decision-
making by more effectively distinguishing between
known and unknown samples during inference.

3) An optimized method for interpolating hidden-layer
feature maps to generate new training samples in the
absence of non-gallery classes.

4) An analysis of how ASL distinguishes known from
unknown identities, attenuates the open-space risk and
achieves state-of-the-art results.

II. RELATED WORK

The majority of modern face recognition applications
rely upon deep neural networks (DNNs) [10, 21, 28, 36].
DNNs used in biometric tasks are typically trained on large
datasets of public figures before being applied to specific
face populations [13]. This condition makes the identification
task inherently domain-adaptive, as none of the individuals
available during the network pre-training are included in the
gallery set, which encompasses only the subjects of interest,
also referred to as the watchlist.

In the past decade, several works have detailed strategies
that adjust pretrained networks to watchlists. Some explore
transfer learning techniques or consist of traditional machine
learning algorithms fitted on deep feature representations [3,
15, 31]. Hashing functions have also been used to solve open-
set face recognition tasks [12, 41, 46]. Other approaches rely
on clustering methods that act as a filtering barrier to un-
known samples [18, 40]. Some researchers have attempted to
optimize the speed-accuracy trade-off of DNNs by designing
lighter architectures [16, 26, 50]. Despite all contributions,
the aforementioned methods present unbounded open-space
risk [38] and are not very well suited for rejecting unknown
individuals as generally required in the watchlist context.

Vaze et al. [44] argued that achieving high accuracy in
closed-set classification is strongly correlated with open-
set performance. The findings suggest that thresholding
techniques applied to the maximum logit score of a strong
closed-set classifier can achieve competitive open-set results.
However, they only considered non-face datasets containing
at least 500 instances per class1 and, as a result, there is little
guarantee the obtained results would propagate to datasets
holding scarce samples per subject, as in biometric applica-
tions. For face recognition, researchers have chased “tailor-
made” approaches to better handle unknown classes. In fact,
many of them have been looking for cost functions that are
able to model the differences between known and unknown
data distributions during the training process [14, 49], as
reported in the subsequent paragraphs.

Liu et al. [25] proposed SphereFace Loss (SPH), a cost
function designed to support neural networks in learning
discriminative embeddings by imposing angular constraints
to the decision boundary on a hypersphere manifold. Later,
Wang et al. [48] disclosed CosFace Loss (COS), a loss
function that adds penalties to the angular space, separating
feature representations of different identities but maintain-
ing intra-class compactness. Similarly, Deng et al. [10]
introduced ArcFace Loss (ARC), another cost function that
incorporates angular margins into the decision boundary in
exchange for larger gaps between embeddings of different
identities. Even though these angular-based functions are
intuitive, they are sensitive to their hyper-parameters and,
eventually, prone to overfitting. They assume embeddings are
angularly separable, which may not align with other domains
where data distributions lack a natural angular structure, such
as geological formations and medical imaging.

1Datasets: MNIST, SVHN, CIFAR10, CIFAR+50 and TinyIMAGENET.



The vast majority of open-set approaches fail to quantify
how confident models are about their predictions. In contrast,
Miller et al. [29] introduced Class Anchor Clustering (CAC),
a loss function that encourages data points from the same
class to cluster tightly around fixed “anchors”. CAC provides
a mechanism for computing a rejection score considering the
distance between a probe instance and all class centers. As a
limitation, CAC only explores samples from gallery-enrolled
identities, neglecting any information that could enhance a
model’s ability to discriminate known from unknown classes.

Dhamija et al. [11] coined “agnostophobia” the fact that
neural networks are generally overconfident when dealing
with instances from unknown classes. The authors came up
with Entropic Open-Set and ObjectoSphere (OBS) losses.
The former maximizes the uncertainty for background sam-
ples by inducing the network responses to lie uniformly
distributed whereas the latter also modifies the magnitude of
training instances based on a gallery/non-gallery principle.
Both methods were later revisited by Günther et al. [16] as
they coupled both losses with adaptation layers to quickly
readjust pre-trained deep networks to specific face watchlists.
More recently, Vareto et al. [42] disclosed Maximal Entropy
Loss (MAX), a function that adds penalty margins to known
identities and increases the entropy for background samples.
Even though the described methods require training data that
includes non-gallery samples from the same underlying dis-
tribution of the gallery set, they do not provide probe samples
with indicative values of open-space risk minimization.

In the interest of modifying data in the latent feature space,
Verma et al. [45] came up with an interpolation strategy to
generate new feature representations. Li et al. [24] proposed
a stochastic feature augmentation procedure to perturb Gaus-
sian noise embeddings, whereas Volpi et al. [47] employed
adversarial samples as background identities. Even though
these works haven’t been evaluated on face benchmarks,
they may provide meaningful insights into how additional
background samples can be incorporated into the training
stage for strong domain generalization.

Labeled Faces in the Wild (LFW) [20] consists of 13,233
images unevenly distributed among nearly six thousand
identities. As LFW was originally designed for verification,
researchers have proposed protocols in an attempt to leverage
open-set identification tasks [15, 26]. IJB-C [27] contains
two disjoint gallery partitions with known subjects: Gallery
A contains 1772 identities alongside 5832 samples whereas
Gallery B holds 1759 individuals and a total of 6024 in-
stances, an average of 3.35 samples per subject. The UCCS
dataset [37] consists of surveillance images taken from more
than 1,700 identities collected over a period of 19 months.
UCCS’s gallery set includes 1,085 subjects of interest hold-
ing nearly 20 instances per class as well as a myriad of
samples belonging to unknown identities. Despite LFW, IJB-
C, and UCCS being well-established datasets, their open-set
protocols highlight three persistent challenges in real-world
biometrics: the large number of classes, the limited number
of samples per category, and the inherent complexities of
working with unconstrained data environments.

III. PROPOSED APPROACH

AXIAL SPHERE LOSS (ASL) is a cost function designed
to enhance open-set classification by leveraging both geomet-
ric and probabilistic perspectives in the latent feature space.
ASL incorporates three key components: intra-class com-
pactness, inter-class separation, and magnitude regulariza-
tion. More precisely, it impels neural networks to minimize
the intra-class spread and maximize the inter-class distance
by handling not only gallery-enrolled identities but also
maintaining background training samples2 with contained
magnitude. In addition, the proposed approach is capable of
handling both known and unknown identities by synthesizing
representative background samples when unavailable, ensur-
ing robust generalization in challenging biometric scenarios.

A. Feature Extraction

Typical neural network pipelines can be characterized as

ŷ = f(x) = Cψ ◦ FΘ(x) = Cψ ◦ FΘL ◦ · · · ◦ FΘ1(x)

where FΘ(x) contains L convolutional layers connected to
an eventual classification layer Cψ . Given a face image
x, the feature extraction and classification modules can be
represented, respectively, as two modular parts: z = FΘ(x)
and ŷ = Cψ(z). In our pipeline, FΘ(x) consists of RESNET
architectures used for getting discriminative representations
whereas Cψ comprises a compact adaptation network in
charge of watchlist/gallery specialization (see Section IV-.4).

B. Background training embeddings

Not having any indicative attribute of unknown sample
distribution is one of the critical drawbacks in deploying
open-set systems. Therefore, we incorporate background face
data into the training stage as we hypothesize that non-
gallery samples may equip neural networks with tighter
class boundaries and enhanced generalization power. Since
background samples can boost classification performance
when sharing equivalent statistics with the gallery set [43],
we synthesize new data using samples from gallery-enrolled
subjects, according to the following equations:

z̄ = λ · zi + (1− λ) · zj (1a)

st.: zj = argmax
(zi′ ,gi′ )∈G

cos(zi, zi′)

gi ̸= gj ∧ 0 ≤ λ ≤ 1
(1b)

Equation (1a) defines the feature augmentation technique
that takes place in the latent space and z̄ is the fabricated
embedding. Observe that z̄ is expressed as a linear com-
bination of feature vectors zi and zj coming from distinct
identities gi and gj of the gallery set G, respectively. The first
constraint in Equation (1b) guarantees that zj is selected in
favor of maximizing the cosine similarity with zi among all
feature vectors zi′ available in set G. The second constraint
states that zi and zj come from different classes whereas the
weight factor λ sets the contribution of each vector.

2Background/non-gallery training data consist of face instances that do
not correspond to any identity registered in the gallery of known subjects.



Each new representation receives a ȳ = −1 label, ensuring
that the tuple (z̄, ȳ) contains information about two different
subjects of interest. Adding supplementary instances makes
the training process more challenging, while simultaneously
enhancing the model’s ability to distinguish between classes
due to the increased diversity in the training data.

C. Axial Sphere Loss

The AXIAL SPHERE LOSS (ASL) is an open-set cost
function that handles training samples in three distinct ways:
(i) ASL induces neural networks to push each class of interest
(gallery set) to fixed regions along axes in the logit space;
(ii) it also pushes non-gallery training samples to lie close
to the logit space origin; in addition, (iii) the proposed loss
focuses on enhancing the intra-class compactness as well as
inter-class separability among known subjects by penalizing
target classes during training time.

1) Fixed class centers: Class centroids correspond to
multi-dimensional points or vectors that summarize the char-
acteristics of classes in a dataset. In the proposed method,
however, we establish them as reference basis vectors that
represent each category in the latent space. They behave
as some sort of static anchoring and play a crucial role in
guiding neural networks when defining decision boundaries
and improving their ability to distinguish between classes.
Equation (2a) and (2b) specify a fixed point pg for each
training class g registered in the gallery set G, as below:

P = (α · p1, α · p2, . . . , α · p|G|−1, α · p|G|) (2a)

p1 = (1, 0, · · · , 0, 0), p2 = (0, 1, · · · , 0, 0),
p|G|−1 = (0, 0, · · · , 1, 0), p|G| = (0, 0, · · · , 0, 1)

(2b)

Essentially, pg can be pictured as |G|-dimensional points,
coordinate axes or one-hot encodings where all indices are
nil except for a single element filled with 1. Each reference
vector pg is multiplied by a scaling factor α that modifies the
magnitude while maintaining their direction and orthogonal-
ity. The fixed class centres are mutually orthogonal in such
a way that pa · pb = 0 for a ̸= b. Such nature results in an
equal separation among all classes as the Euclidean distance
between any pair of one-hot vectors is α

√
2, as follows:

d(pa,pb) =

√√√√ |G|∑
i=0

(αpa[i] − αpb[i])
2 =

√
α2 + α2 = α

√
2

Unlike the traditional use of one-hot target vectors and
posterior probability scores in categorical classification tasks,
our approach assumes that each reference point represents a
fixed coordinate/point in the Euclidean space. This shift in
perspective implicitly encourages neural networks to treat
logit scores geometrically, that is, the relationship between
feature vectors and class representations is measured through
spatial distances instead of probabilistic distributions. As a
result, the adoption of fixed class centers promotes a more
organized and interpretable structure within the feature space,
improving the model’s capacity to represent class-specific
information in a spatially meaningful manner.

2) Intra-class distance: The intra-class distance refers to
a statistical metric that quantifies the distance among feature
vectors and anchors, commonly associated with class means
or predefined class prototypes. In the proposed approach, we
compute the intra-class distance between a logit vector ŷ pre-
dicted by a neural network and its corresponding reference
point py ∈ P . Equation (3) designates the Euclidean distance
to estimate the length of the straight-line segment between
ŷ and py , as indicated below:

Lintra(ŷ, y) = d(ŷ,py) = ∥ŷ − α · py∥2 (3)

Basically, Lintra encourages any generic neural network
f(x) to produce logits positioned closer to their respective
fixed-class centers. The loss score obtained through Lintra
indicates how well the network has successfully learned to
align the predictions with their respective class centers. Note
that the Euclidean distance is minimized when ŷ perfectly
matches α ·py . Therefore, it helps establish clearer decision
boundaries in classification tasks by implicitly improving the
feature space organization and reducing the overlap among
gallery-enrolled classes.

3) Inter-class distance: The inter-class distance is a mea-
sure of the dissimilarity between different classes or groups
of data points, widely used to quantify how far apart distinct
classes are from each other in a feature space. Unlike
the previous step, now we estimate the Euclidean distance
between a logit vector ŷ and all fixed class centers pg ∈ P
associated with subjects enrolled in the gallery set G.

Linter(ŷ, y) = log

(
G∑
g

ed(ŷ,py)−d(ŷ,pg)

)
(4)

Function Linter focuses on maximizing the separation be-
tween different classes by penalizing the model when the
distance to the target category py is larger than the distance
to any other class center pg . Exponentiating the differences
among d(ŷ,py) and d(ŷ,pg) for all g ∈ G is a common
tactic to eliminate negative values and ease the interpretation.
Given the asymptotic behavior of the exponential function
ex, condition d(ŷ,py) > d(ŷ,pg) implies that logit vector
ŷ is distant to its true class, which results in positive or
higher error scores; otherwise, the penalty remains lower.
The summation over all classes g ∈ G aggregates penalties
across all centroids during training, pushing feature vectors
away from their incorrect reference points. Ultimately, the
logarithmic function compresses the scale of large penalties,
ensuring that the contributions of smaller penalties are not
entirely suppressed by the prioritization of larger errors.

4) Magnitude Estimation: The magnitude (or norm) is a
non-negative function that assigns a measure of length/size to
feature vectors. In this work, we use the Euclidean L2-norm
to impose certain constraints on the predicted logit vector ŷ.
Function Lmag behaves differently depending on whether the
true class y belongs to the gallery set G, as follows:

Lmag(ŷ, y) =
{

max(α− ∥ŷ∥2 , 0) if y ∈ G
∥ŷ∥2 if y /∈ G

(5)



The Euclidean norm is mathematically expressed as ∥.∥2,
inducing a model to produce a logit vector with magnitude
closer or greater than α when its label y is enrolled in G.
Then, ∥ŷ∥2 ≥ α indicates a good estimate for y as the loss
reaches zero; otherwise, the error increases as the norm of ŷ
decreases. For samples belonging to background classes, the
error merely comprehends the magnitude of ŷ, which drives
the neural network toward producing logit predictions with
smaller norms. Essentially, logit vectors with low magnitudes
are less likely to align with any reference point, making it
easier to distinguish them as out-of-distribution samples.

5) Loss aggregation: Associating all the aforementioned
distance metrics, as shown below, is expected to encourage
class separability, minimize ambiguity and improve the dis-
criminative power on open-set tasks:

LASL(ŷ, y) = Linter(ŷ, y) + λ[Lintra(ŷ, y) + Lmag(ŷ, y)]

By construction, function Linter is designed to prevent over-
laps among different classes by penalizing the embeddings
when they fail to maintain sufficient distance to mismatched
reference points. Higher λ emphasizes pulling known sam-
ples closer to their respective class center as well as keeping
background instances near the origin. In addition, it provides
flexibility in emphasizing certain aspects of the loss function,
making it adaptable to various tasks and datasets.

D. Enrollment and Inference

Following the training process, we construct a gallery of
templates T by iterating over all subjects of interest present
in the training set. Specifically, we substitute the fixed class
centers pg ∈ P for a template tg ∈ T that captures the
central tendency through the mean logit vector of all samples
available for subject g. It ensures that reference points are not
merely predefined anchors but, instead, dynamically adapted
to reflect the model’s learned feature distribution.

The following equations demonstrate how our approach
addresses the open-space risk at inference time by assigning
an acceptance scores to a prediction ŷ = f(x), as follows:

δ = d ◦ [1− softmin(d)] (6a)

ρ = [max(δ)− δ] ◦ ∥ŷ∥2 (6b)

Equation (6a) establishes an element-wise (◦) relationship
between absolute distance vector d and its relative softmin
counterpart, which holds the probability of not belonging to
any known class. Each item dg ∈ d represents the distance
between logit vector ŷ and a specific class template tg ∈ T .
Then, δg is expected to hold a small rejection score when ŷ
belongs to subject g. Equation (6b) converts rejection vector
δ into an acceptance vector ρ by subtracting each element
from its maximum value. Term ∥ŷ∥2 incorporates magnitude
information assuming that unknown probe samples are close
to the logit space origin and have smaller norm/length.
Finally, a probe sample is regarded as unknown when all
values ρg ∈ ρ fail to surpass a threshold θ, as shown below:

ĝ =

{
argmax(ρ) if max(ρ) > θ,

‘unknown’ otherwise.

IV. EXPERIMENTS

We implemented the proposed approach using the Py-
Torch framework [32] along with the Bob library [2, 7]
for feature extraction. Our application operates on deep
representations extracted from the long-established RESNET
architectures, specifically utilizing three pre-trained models:
VGGFACE2 [5], AFFFE [23] and ARCFACE [10].

1) Evaluation Metric: The Open-set Receiver Operating
Characteristics (O-ROC) curve plots the Detection and Iden-
tification Rate (DIR) against the False Positive Identification
Rate (FPIR) by a varying decision threshold θ [34]. DIR
represents the proportion of known probe samples from a
target g that are correctly detected and identified, while
FPIR quantifies the proportion of unknown probe samples
mistakenly identified. An ideal open-set face identification
system achieves a DIR of 1.0 while maintaining an FPIR
close to 0, ensuring high recognition accuracy for known
subjects and high rejection of unknowns. The area under
the O-ROC curve (AUC) provides a single scalar value that
summarizes the overall performance of a recognition system
across all threshold values θ. We also report the closed-set
Rank-1 recognition rate, derived from the Cumulative Match
Characteristic (CMC) curve, which measures the proportion
of probe samples whose correct identity appears within the
top-k ranked matches, providing insight into the system’s
ranking performance across different values of k.

2) Datasets and Protocols: We evaluate the proposed cost
function using LFW, IJB-C, and UCCS datasets [20, 27, 37].
The LFW dataset is employed for parameter selection, picked
to determine optimal settings that are subsequently applied
to other domains without modification. The IJB-C dataset is
evaluated under the test-4 protocol, which does not provide
background samples, requiring us to dynamically synthesize
them during training, as detailed in Section III-B. We train
the model using only gallery A, ensuring that probe samples
corresponding to identities exclusive to gallery B are treated
as unknown subjects. The UCCS dataset comprises a real-
world surveillance scenario, containing an official watchlist
protocol that includes bounding box coordinates and identity
labels for both known and unknown faces. Additionally, we
conduct a qualitative analysis on the PUBFIG83 dataset [33]
to illustrate how ASL reshapes the latent feature space.

3) Evaluated Methods: We conducted experiments in the
interest of providing a comprehensive comparison on the
performance of AXIAL SPHERE LOSS (ASL). Specifically,
we benchmarked ASL against several loss functions, such as
Cross-Entropy (XEN) [44], ArcFace (ARC) [10], CosFace
(COS) [48], SphereFace (SPH) [25], Class Anchor Cluster-
ing (CAC) [29], Maximal Entropy (MAX) [43], and Objec-
toSphere (OBS) [11]. These cost functions have been chosen
as they represent a diverse range of methodologies, including
margin-based classification, angular-based metric learning,
and open-set recognition approaches. By comparing ASL to
these widely recognized baselines, we aim to highlight its
advantages in terms of improving class separability, reducing
open-space risk, and enhancing recognition accuracy for both
closed-set and open-set scenarios.
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Fig. 2: LITERATURE COMPARISON - LFW. The charts demonstrate open-set recognition results obtained when training an adapter network with either the
proposed ASL or seven other cost functions (CAC, XEN, ARC, COS, SPH, MAX, and OBS). Feature embeddings are extracted using three RESNET-based
architecture and then fed into the adapter network. The performance is summarized in the form of AUC scores and indicated in the legend.

4) Watchlist Adaptation: We incorporate the concept of
adapter networks [16] to enable rapid updates to the gallery
set without requiring a complete retraining of face DNNs.
Our compact adapter model is implemented as a multi-layer
perceptron network with two hidden fully-connected layers
and 20% of the nodes dropped out. Both intermediate layers
enclose 128 neurons for experiments conducted on the LFW
dataset. In contrast, the first hidden layer is configured with
256 neurons while the second comprises 512 neurons for
evaluations involving IJB-C and UCCS (larger gallery sets).
Since the adapter network benefits from deep representations
extracted with RESNET-based architectures; namely AFFFE,
ARCFACE and VGGFACE2; the input layer size ranges from
1000, 512 and 2018 dimensions, respectively.

During watchlist specialization, the adapter network and
all assessed cost functions are trained for a maximum of
100 epochs. The learning rate has been set to 3e−4 and an
early stopping mechanism is triggered whenever the training
accuracy reaches 0.995. However, we observe that both CAC
and ASL algorithms exhibit a tendency to make the adapter
network overfit to the gallery set due to their strong influence
on feature space optimization. We impose a stricter training
limit for these two cost functions to mitigate this issue,
restraining the maximum number of epochs at 50. This
adjustment ended up preventing overfitting while maintaining
the integrity of the comparison with other loss functions.

A. Parameter Selection

Table I presents the AUC results of a grid search conducted
to identify the optimal hyperparameters for the ASL function
on the LFW dataset. Results are divided into three sections,
each focusing on a different hyperparameter (non-linearity
functions along with scaling and weighting factors) in which
the best-performing configurations are highlighted in bold.
The first section compares different activation functions,
revealing that Tanh achieves the highest AUC of 0.909.
The second one shows that α = 10 yields the best AUC
with performance gradually decreasing as α increases to 30.
Lastly, the optimal value is found to be λ = 0.10, achieving
an AUC of 0.912, while other values such as λ = 0.30 and
λ = 0.05 deliver comparable results.

Parameter Selection - LFW dataset

Activation CeLU Leaky ReLU SiLU Tanh
AUC 0.904 0.844 0.807 0.817 0.909

Parameter α 5. 10. 15. 20. 30.
AUC 0.909 0.909 0.878 0.861 0.819

Parameter λ .05 .10 .20 .30 .50
AUC 0.909 0.912 0.911 0.910 0.896

TABLE I: Seeking optimal parameters for AXIAL SPHERE LOSS following
a grid search mechanism. Note that best results highlighted in bold font.

We conjecture that Tanh outperforms the other activation
functions by virtue of computing bounded values in the
range [−1,+1], smoothly normalizing the feature space.
As a result, it makes the optimization process more stable
and prevents the adapter network from learning inconsistent
representations. We noticed that setting α to large values
can cause the class anchors to become overly dispersed,
disrupting the network’s ability to maintain a well-structured
feature space and hindering the effective distinction between
known and unknown samples. Since λ represents a trade-off
among ASL components, larger values may have a negative
impact on closed-set classification, whereas small digits may
reduce the open-set performance. In favor of contrasting ASL
with other literature works, we set α = 10., λ = .10, and
adopt Tanh as the activation function for the adapter network.

B. Literature Comparison

To showcase the superiority of AXIAL SPHERE LOSS over
other cost functions commonly utilized in face recognition
tasks, we conduct a comprehensive evaluation across multi-
ple datasets, including LFW, IJB-C, and UCCS. Figures 2
and 3 disclose O-ROC curves alongside their corresponding
AUC scores, generated from experiments carried out on
open-set protocols. Additionally, Table II also presents a
comparison of closed-set performance indicating the results
taken from the standard CMC curve. The table provides
a two-level ranking performance for each dataset: Rank-1
representing the top-1 match accuracy, and Rank-10, which
measures accuracy when considering the top-10 candidates.
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(a) RESNETARCFACE assessment on IJB-C dataset
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(b) RESNETARCFACE assessment on UCCS dataset

Fig. 3: LITERATURE COMPARISON - IJB-C AND UCCS. Two charts demonstrating open-set recognition results obtained when training an adapter network
with either the proposed ASL or seven other cost functions (CAC, XEN, ARC, COS, SPH, MAX, and OBS). Feature embeddings are extracted using
RESNETARCFACE architecture and then fed into the adapter network. The performance is summarized in the form of AUC scores and indicated in the legend.

1) Labeled Faces in the Wild: Figure 2 presents the
results of experiments conducted on the LFW dataset under
an open-set protocol introduced by Günther et al. [15].
This protocol strategically sets aside subject classes holding
a single sample to serve as supplementary identities dur-
ing the training phase. In fact, evaluating ASL and other
background-handling loss functions on Günther’s protocol
does not require synthesizing additional feature embeddings
to leverage their performance on open-set scenarios.

Results demonstrate that approaches capable of handling
background samples, such as MAX and OBS, tend to per-
form better than other long-established cost functions, known
for being employed to train face recognition systems [49].
This suggests that the inclusion of additional background
instances equips the adapter network with enhanced capa-
bilities to distinguish between LFW subjects and effectively
reject unknown identities. Notably, AXIAL SPHERE LOSS
achieves a significant leap in performance, surpassing all
baseline methods with outstanding AUC scores of 0.913,
0.912, and 0.973 across the different RESNET architectures.
These results highlight ASL’s robust ability to maintain
superior detection and identification rates across the entire
false-positive range, spanning from 10−3 to 100. Among the
three evaluated backbones, RESNETARCFACE delivers the best
overall performance, making it the most suitable choice for
subsequent analyses on IJB-C and UCCS datasets.

2) IARPA Janus Benchmark series C: IJB-C dataset lacks
background samples available for training in its official open-
set protocol. We also observed that the selected additional
data did not improve performance, likely due to their sta-
tistical mismatch with the gallery set [43]. As picking the
right background data plays a crucial role in open-set classi-
fication, Figure 3a discloses the performance of experiments
in which synthetic additional instances are generated for
background-handling cost functions (ASL, MAX and OBS)
in accordance with the formulation specified in Section III-
B. Note that these embeddings are generated during training
and follow the same underlying data distribution of identities
enrolled in the gallery set.

Figure 3a converts into numbers how the evaluated cost
functions handle open-set face recognition in a more de-
manding scenario. The proposed ASL achieves the highest
AUC score of 0.843 and the curves demonstrate its superior-
ity in maintaining higher detection and identification rates on
the full false-positive spectrum. In contrast, traditional loss
functions show relatively weaker performance, culminating
in XEN reaching the lowest AUC score of 0.520. All
methods undergo a drop below DIR@FPIR = 2× 10−3, sug-
gesting they struggle to maintain accuracy under more strict
conditions. IJB-C’s open-set protocol consists of nearly 20
thousand probe templates when FPIR = 100 but decreases
significantly when FPIR ranges from 10−3 to 10−4 where
DIR is computed on fewer than 20 samples. This scarcity
of test samples makes the curve more susceptible to abrupt
changes, potentially leading to misleading interpretations.

3) UnConstrained College Students: Unlike previously
assessed benchmarks, the UCCS dataset encloses background
samples alongside face misdetections. For a more realistic
analysis, we get rid of all non-face detections as they end
up easing the recognition process, eventually pushing O-
ROC curves upwards. As for LFW, UCCS’s open-set pro-
tocol eliminates the need for synthesizing additional feature
embeddings, enabling a direct assessment of loss functions
without the need for artificial data augmentation.

As demonstrated in Figure 3b, ASL persists as the most
effective approach with an AUC score of 0.883 on the UCCS
dataset, attaining better generalization and discrimination
degrees than all seven challengers. CAC also achieved a
strong performance with an AUC of 0.853, performing
surprisingly well without supplementary background data.
However, the results show that it was not able to preserve
the fine-grained feature separation learned with ASL. The
faster performance degradation on UCCS may be explained
by its surveillance-style imagery, which amplifies open-set
recognition challenges. UCCS’s unconstrained characteristics
imply higher data complexity, introducing noise and data
variability, a condition that makes it harder for any model
to distinguish between known and unknown classes.



Method IJB-C LFW UCCS
RESNETARCFACE D@F=1% Rank-1 Rank-10 D@F=1% Rank-1 Rank-10 D@F=1% Rank-1 Rank-10

XEN 0.20 0.61 0.79 0.14 0.76 0.94 0.10 0.79 0.93
ARC 0.14 0.71 0.85 0.54 0.81 0.94 0.18 0.75 0.88
COS 0.41 0.77 0.86 0.50 0.82 0.94 0.26 0 .84 0.93
SPH 0.38 0.76 0.86 0.53 0.82 0.94 0.27 0 .84 0.93
CAC 0 .73 0.85 0 .89 0.84 0.95 0 .98 0 .53 0.91 0.96

MAX 0.59 0 .83 0.90 0.87 0 .97 0.99 0.12 0 .84 0 .94
OBS 0.59 0 .83 0.90 0 .88 0 .97 0.99 0.14 0 .84 0 .94

ASL 0.78 0.85 0.90 0.94 0.98 0.99 0.55 0.91 0.96

TABLE II: We report DIR@FPIR=1%, showing the detection and identification rate at 10−2 false positives, using RESNETARCFACE as the feature extractor.
Additionally, Rank-1 and Rank-10 scores summarize the closed-set CMC curve. The best and second-best results are highlighted in bold and italics.

(a) Latent space visualization

Method Euclidean Distance Bhattacharyya
Knowns↓ Unknowns↑ Coefficient↓

XEN 1.05± 0.33 2.75± 0.23 0.390
CAC 2.16± 0.87 6.73± 0.61 0.165
MAX 1.10± 0.35 2.93± 0.26 0.384
OBS 3.45± 1.65 9.94± 1.55 0.192

ASL 1.94± 0.84 6.90± 0.65 0.150

(b) Distance to closest class center
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Fig. 4: ABLATION STUDY - PUBFIG83. Scatter plot (a) displays the position of three subjects of interest in the latent space (color markers) and unknown
samples close to the origin (black/gray crosses). Table (b) outlines the distance’s mean ± std.dev. of each probe sample to the nearest class center and a
distribution similarity coefficient. Histogram (c) exhibits the different magnitude distribution of known and unknown probe samples.

C. Ablation Study

Hereafter, we adopt the PUBFIG83 dataset to check how
ASL influences the weights of the adapter network. Apart
from the space visualization, all experiments hold 40 subjects
of interest and 40 unknown identities from a total of 83
individuals. Given the known set, we assign 60% of the sam-
ples for training and the other 40% for testing. Background
samples are generated during training by applying the feature
augmentation technique to the gallery set samples.

1) Latent Space Visualization: We choose nine random
identities to visualize the latent space in a low dimension-
ality. Three subjects are picked to compose the gallery set,
background set, and unknown set, respectively. Figure 4a
demonstrates how ASL enforces a structured separation
between known and unknown samples. Known identities
(color markers) hold simultaneous intra-class compactness
and inter-class separation, while unknown samples (black
crosses) are pushed toward the origin. The plot shows ASL’s
effectiveness in balancing feature compactness and openness,
making it well-suited for open-set face recognition tasks.

2) Distance to Closest Class: Table 4b presents a quan-
titative comparison based on Euclidean distance metrics and
the Bhattacharyya coefficient [4]. ASL ensures that known
probe samples remain closer to their respective class centers
(1.94±0.84) but pushes unknown probe samples significantly
farther apart (6.90± 0.65). Additionally, ASL demonstrates
the lowest Bhattacharyya coefficient (0.150), indicating min-
imal overlap between the distribution of known and unknown
identities. This performance suggests a superior ability to
distinguish unseen identities, reducing misclassification risks
in open-set scenarios and face recognition tasks.

3) Feature Magnitudes: Figure 4c shows the distribution
of magnitudes of known and unknown samples in the logit
space. Through the norm-based term (Equation 5), ASL
leads networks to produce larger magnitude logits for known
samples and smaller magnitudes for unknown samples. This
distinction in logit magnitudes provides a valuable cue for
the model to discriminate between known and unknown iden-
tities, enhancing the performance of open-set recognition.

V. CONCLUSION

In this work, we introduced AXIAL SPHERE LOSS (ASL),
a cost function designed to enhance open-set recognition
by restructuring the latent space. Experiments across face
recognition benchmarks demonstrate that ASL consistently
outperforms state-of-the-art loss functions in both closed-
set and open-set scenarios. By enforcing an axial constraint
on feature representations, ASL achieves superior separation
between known and unknown identities, mitigating the open-
space risk – a critical challenge in open-set recognition. The
empirical study confirms that ASL maintains compact intra-
class distributions for known identities while increasing the
distance of unknown samples, as evidenced by higher Eu-
clidean separation and lower Bhattacharyya coefficient. The
improved open-set ROC curves and AUC scores reinforce its
capability to reject unseen classes more effectively.

These findings establish ASL as a powerful alternative
to traditional softmax-based and angular margin losses, es-
pecially in open-set recognition applications. Future work
may explore further refinements to ASL, including adaptive
hyperparameter tuning and extensions to other biometric and
object recognition tasks, solidifying its impact in real-world
scenarios where open-set generalization is paramount.
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ETHICAL IMPACT STATEMENT

The development of Axial Sphere Loss (ASL) aims to improve
open-set face recognition by enhancing the separability between
known and unknown identities while mitigating the open-space risk.
While this advancement contributes to the robustness of biometric
systems, it is crucial to assess its ethical implications.

Review and Oversight
This study does not involve direct interaction with human

subjects or the collection of personally identifiable information.
The datasets used in our experiments, including LFW, IJB-C,
PUBFIG83 and UCCS, are publicly available and widely used
in face recognition research. We strictly adhere to dataset usage
policies and avoid any re-identification attempts beyond what is
necessary for our research objectives. Considering the nature of our
study, formal oversight from an Institutional Review Board (IRB)
was not required.

Potential Risks and Societal Impact
The Axial Sphere Loss (ASL) proposed in this paper improves

open-set face recognition by enhancing feature separability and
mitigating open-space risk. While this contributes to advancements
in security and identity verification, it also raises ethical concerns
related to privacy, surveillance, and potential misuse in applications
such as mass monitoring and law enforcement. Face recogni-
tion technology has historically exhibited bias across demographic
groups, leading to disparities in performance. If not properly man-
aged, ASL could unintentionally reinforce these biases, resulting
in unfair treatment of underrepresented populations. Additionally,
ASL’s ability to reject unknown identities more effectively could
be exploited in restrictive environments, leading to concerns about
exclusion or misuse in authoritarian surveillance systems.

Risk Mitigation Strategies
To reduce these risks, we implement several mitigation strategies:
• Fairness and Bias Awareness: We recommend that ASL be

evaluated on diverse and balanced datasets before deploy-
ment in real-world applications. Future work should explore
fairness-aware training and demographic bias analysis.

• Privacy and Data Ethics: We do not introduce any new datasets
and only use publicly available resources, ensuring compliance
with dataset policies. Organizations adopting ASL should
implement data protection measures and comply with legal
frameworks such as the General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA).

• Responsible Deployment: ASL should be used in ethical and
regulated environments, with safeguards preventing misuse
in mass surveillance and discrimination-based applications.
We encourage the development of ethical AI policies when
deploying open-set recognition models.

Balancing Risks and Benefits
The potential benefits of ASL, including improved biometric

security, fraud prevention, and robust identity verification, outweigh
its risks when deployed with fairness considerations and regulatory
oversight. By improving open-set recognition, ASL enhances model
reliability and real-world applicability, making it a valuable contri-
bution to biometric and security applications. However, we strongly
advocate for ethical AI practices, continued bias assessments, and
the responsible use of face recognition technology to prevent
unintended societal harm.

CODE AVAILABILITY

The source code containing the proposed AXIAL SPHERE LOSS
has been developed by Mr. Rafael Henrique Vareto, currently
pursuing a Ph.D. degree at the Federal University of Minas Gerais,
Brazil. The approach is publicly available as a Python package
through the PIP installer program (pip install openloss),
an effortless way to integrate our method into new projects. The
code can also be accessed from the following GitHub repository:
https://github.com/rafaelvareto/open-loss.
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